

СПРАВОЧНИК

В.М.Петухов Полупроводниковые приборы

ТРАНЗИСТОРЫ

СПРАВОЧНИК

В.М.Петухов

Полупроводниковые приборы

ТРАНЗИСТОРЫ

Дополнение первое

ББК 32 852.3 П 29 УДК 621.382.3(03)

Редакция литературы по электронике

Петухов В. М.

П 29 Полуироводниковые приборы. Транзисторы. Дополнение первое: Справочник. - - М.: Радио и связь, 1993.— 224 с.: ил.

ISBN 5-256-01093-X.

Приводятся электрические и эксплуатационные характеристики полупроводниковых приборов - полевых и бинолярных низкочастотных, высокочастотных и сверхвысокочастотных транзисторов малой, средней и большой монности. Для конкретных типов приборов приводятся сведения об основном назначении, габаритных и чрисосдинительных размерах, маркировке, предельных эксплуатационных режимах и условиях работы.

Для инженерно-технических работников, занимающихся

разработкой, эксплуатацией и ремонтом аппаратуры.

 $\Pi \, {2302030300\text{-}007 \over 046(01)\text{-}93} \,$ Информ. письмо

ББК 32.852.3

©) Петухов В. М., 1993

Содержание

Предисловие Условные обоз	 начения	, . Элек	 тричесь	 их пара	.метры		•	
СПРАВОЧНЫ				ЕРВАЯ ОЛЯРНЕ		РАНЗИ	сторов	
Раздел пер стотные		•	•			•	ысокоча-	
Транзисторы <i>п</i>	1-p-n .							
ҚТЗ150Б-2 2ТЗ162А,	2 2T3162A	-5 .					 	
Раздел вто	ров Тр	анзи	сторы с	ретней	мошно	сти низ	кочастот-	
ные								
Транзисторы <i>г</i> 2Т506А-5								
Транзисторы <i>д</i> КТ505А, 1	9- <i>п-р</i> КТ505Б							
2T505A-5 2T509A-5								
Раздел тре ные							кочастот-	-
Транзисторы г								
2T630A-5 2T665A9, 3	 2Т665Б9							
KT680A KT683A, 1	(Т683Б,	 ҚТ68	 3В, КТ	683Γ, K	.T683Д	KT683	 BE	
Транзисторы д КТ639А,	p-n-p .				 F 1/1	coo II	VTCOOL	
КТ639Ж,	КТ639И							
KT661A KT662A								
2T664A9, 1 KT668A, 1	2Т664Б9							
K 1668A, 1 K 1681A	КТ668Б,	KT66	8B					
КТ685А, КТ685Ж	КТ685Б	, K	г685В,	KT685	r, Ki	685Д,	KT685E,	,
КТ686А, КТ686Ж	КТ686Б	, K	Г686В,	KT686	· Γ, ΚΊ	686Д,	KT686E,	,
1/10001/1/								

Раздел четвертый. Транзис					
сокочастотные					45
Транзисторы n - p - n					45
KT659A					45 46
2T671A-2					48
Транзисторы <i>p-n-p</i>			. . .		50
2T691A-2					50
Раздел пятый. Транзисторы	мощні	ые низко	частотные		52
Транзисторы $n - p - n$					52
Транзисторы <i>п-р-п</i>					52
21/16A1, 21/16b1, 21/16B1					55
KT81762, KT817Γ2 KT841A, KT841B, KT841B .				• • • •	57 58
2Т874А, 2Т874Б					61
2T874A, 2T874B	Т875Г	`			63
2T878A, 2T878B					66
218/9A, 218/9b	тоотг	, · · ·			69
21001A, 21001B, 21001B, 2 2T885A 2T885B	10011			• • • • •	72 74
2T885A, 2T885B					76
Транзисторы <i>p-n-p</i>					78
2Т709А2, 2Т709Б2, 2Т709В2	2				78
* KT816A2					80
2T825A-5					81
2T836A-5					83 84
· 2Т876A, 2Т876Б, 2Т876В, 2Т8	376Γ.				87
2Т877А, 2Т877Б, 2Т877В.					89
2T877A, 2T877B, 2T877B . 2T880A, 2T880B, 2T880B, 2	Т880Г				92
Раздел шестой. Транзисторь	и мощ	ные выс	жочастотн	ые	94
					94
Транзисторы <i>n-p-n</i>	B-5				94
KT969A-5					96
КТ969А-5. КТ997А, КТ997Б					96
KT999A KT9116A, KT9116B 2T9117A, 2T9117B, 2T9117B,					98
KIBIIDA, KIBIIDD	o.roi	 175			100
2T917A, 21917B, 21917B, 2T9126A	2191	1/1			102
2T9130A					103
2T9131A					109
KT9133A					111
KT9145A-5				· · · ·	113
Транзисторы р-п-р					115
KT9144A-5					117
KT9144A-5					118
Раздел седьмой. Транзистор					119
					•
Гранзисторы <i>n-p-n</i>	• :		• • •		119
2T995A-2					121
2T995A-2					124

						9 T	เมาร	, 1 F										
2T9121A																		
2T9124A 2T9127A 2T9129A 2T9135A 2T9137A 2T9139A	, 2T912	1 Б.																130
2T9127A	, 2T912	7Б.																134
2T9129A																		137
2T9135A	-2 .																	139
2T9137A																_		141
2T9139A	2T9139	96													•		٠	144
2T9140A KT9141A 2T9146A	, =		·	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	147
KT0141A	KTQ1.	41Δ1	•	•	٠.	•	•	•	•	•	•	•	•	٠	•	•	•	150
0701461	9T014	6E	910	111	SP	•	•	•	•	٠		•	•	•	•	•	•	152
219140A	9T014	VD,	213	114	מט	•	•	•	•	٠	•	٠	•	٠	•	•	•	152
2T9149A	, 219143	D.	•	٠	•	٠	•			•	•		٠	٠	•	٠	•	156
ранзисторы	p-n-p			· .		•			٠						•			159
Гранзисторы КТ9143А	i, K1914	ΙЗЬ,	KI	914	3B		•											159
Раздел во	осьмо	й. С	бор	КИ	тр	ан	зис	тор	ОВ									160
ранзисторы	n-n-n		•															160
KT3174A	C^{n}	•	•	•	•	•	•	•	٠	•	٠		٠	•	٠	٠	•	160
LATORE A C	•		•	٠	•	•	٠	٠	•	•		•	•	•	٠	٠	•	160
K1985A	٠		٠	•	٠	•	•	•		٠	•	•	٠	•	•	٠	•	162
KT993AC KT991AA KT9105A 2T9125A 2T9128A 2T9132A 2T9134A 2T9136A	٠					٠							٠					164
KT9101A	Ç.		•	•														166
KT9105A	.C .																	168
2T9125A	С																	170
2T9128A	C .																	172
2T9132A	C .		_													-	-	174
2T9134A	2T9134	ıĸ	•	•	•	•	•	•	•	•	•	•	٠	٠	•	٠	•	176
21010171	, 2 1 3 1 3 .		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	170
2 (UI 36A)	('											•			٠	•	•	179
219136A	C .					٠	٠	•										
219136А ранзисторы 2 Т68 7АС	p-n-p C-2, 2T6	 87Б(C-2		· ·									:	•			181 181
2Т9136А Гранзисторы 2Т687АС	с p-n-р с-2, 2Т6	87Б(C-2	•			•							•				181 181
Гранзисторы 2Т687АС	р-n-р -2, 2Т6	87Б(C-2 Ч А		T I		: : :		PΑ	я								
219130A Гранзисторы 2Т687AC	р-n-р -2, 2Т6	87Б(C-2 Ч А		T I		: : :		PΑ	я								
гранзисторы 2T687AC	<i>p-n-p</i> <i>p-n-p</i> <i>c-2</i> , 2Т6	87Бо Е Д	С-2 Ч А (АН		T I	• I	3 T 10 J	О I ЛЕ	Р А ВЬ	Я XI	T	'P <i>A</i>	λH:	3И	ст	ΌΡ	РОВ	3
СПРАВ КП327A	<i>p-n-p</i> c-2, 2Т6	: 87Б¢ ЕД	С-2 Ч А (АН	C HE	T I	. I	3 T 10 J	О I ЛЕ	Р А ВЬ	я XI	Т	PΑ	\ H:	3И	ст	ΌΡ	OB	184
СПРАВ КП327A	<i>p-n-p</i> c-2, 2Т6	: 87Б¢ ЕД	С-2 Ч А (АН	C HE	T I	. I	3 T 10 J	О I ЛЕ	Р А ВЬ	я XI	Т	PΑ	\ H:	3И	ст	ΌΡ	OB	184
СПРАВ КП327А КП346 A	р-n-р с-2, 2Т6 ОЧНЫІ , КП323 2П333	 87Бч Е Д 7Б, . 16Бс	С-2 Ч А (АН КПЗ	C HE	T H J E	KI	3 T 10. 132	О I ЛЕ	Р А ВЬ	я ХІ	T	Έ <i>Α</i>	λH:	З И	CT :	°ОР	POB	184 186
СПРАВ КП327А КП346 A	р-n-р с-2, 2Т6 ОЧНЫІ , КП323 2П333	 87Бч Е Д 7Б, . 16Бс	С-2 Ч А (АН КПЗ	C HE	T H J E	KI	3 T 10. 132	О I ЛЕ	Р А ВЬ	я ХІ	T	Έ <i>Α</i>	λH:	З И	CT :	°ОР	POB	184 186
СПРАВ КП327А КП346 A	р-n-р с-2, 2Т6 ОЧНЫІ , КП323 2П333	 87Бч Е Д 7Б, . 16Бс	С-2 Ч А (АН КПЗ	C HE	T H J E	KI	3 T 10. 132	О I ЛЕ	Р А ВЬ	я ХІ	T	Έ <i>Α</i>	λH:	З И	CT :	°ОР	POB	184 186
СПРАВ КП327А КП346 A	р-n-р с-2, 2Т6 ОЧНЫІ , КП323 2П333	 87Бч Е Д 7Б, . 16Бс	С-2 Ч А (АН КПЗ	C HE	T H J E	KI	3 T 10. 132	О I ЛЕ	Р А ВЬ	я ХІ	T	Έ <i>Α</i>	λH:	З И	CT :	°ОР	POB	184 186
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р (-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ) , КП704 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р с-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ , КПЗО: 41 КПТО4 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р с-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ , КПЗО: 41 КПТО4 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р с-2, 2Т6 ОЧНЫІ , КПЗ2: 2ПЗЗЗ 9, КПЗ , КПЗО: 41 КПТО4 2П7061	 87Б 6 46Б 6 5, 21	С-2 Ч А (АН КПа), К	С НЬ 327 ПЗ	T I B, 346	KI B9	3 T 10J	Ο Ι ΠΕ	P A Bb	я ХІ	T	'PA	λ H :	3 И	СТ	**OP	POE	184 186 187 189 191
СПРАВ КПЗ27А 2П333А, КП346А 2П601А 2П706А, КП922А, 2П928А, 2П933А, КП346А 3П606А-31606А-31608А-31608А-31927А	р-п-р 6-2, 2Т6 ОЧНЫІ , КП32; 2П333 9, КП3 9, КП704 2П706I КП704 2П928; 2П933; КП934 2, 3П60 2, 3П60 5, 3П60 2, 3П60		С-2 Ч А КПЗ КПЗ КП КП КП	С НЕ 327 (П3 160 160	T H B, 346	KI B9	3 T 10. 132	Ο Ι ΠΕ 7Γ 	P A B b	я хіх	T	`PA	A Hi	3 M	CT	**************************************	· · · · · · · · · · · · · · · · · · ·	184 186 187 189 191 192 194 196 199 201 203 205 207 210 -212 214
СПРАВ КПЗ27А 2П333А, КП346А 2П601А 2П706А, КП922А, 2П928А, 2П933А, КП346А 3П606А-31606А-31608А-31608А-31927А	р-п-р 6-2, 2Т6 ОЧНЫІ , КП32; 2П333 9, КП3 9, КП704 2П706I КП704 2П928; 2П933; КП934 2, 3П60 2, 3П60 5, 3П60 2, 3П60		С-2 Ч А КПЗ КПЗ КП КП КП	С НЕ 327 (П3 160 160	T H B, 346	KI B9	3 T 10. 132	Ο Ι ΠΕ 7Γ 	P A B b	я хіх	T	`PA	A Hi	3 M	CT	**************************************	· · · · · · · · · · · · · · · · · · ·	184 186 187 189 191 192 194 196 199 201 203 205 207 210 -212 214
СПРАВ КПЗ27А 2П333А, КП346А 2П601А 2П706А, КП922А, 2П928А, 2П933А, КП346А 3П606А-31606А-31608А-31608А-31927А	р-п-р 6-2, 2Т6 ОЧНЫІ , КП32; 2П333 9, КП3 9, КП704 2П706I КП704 2П928; 2П933; КП934 2, 3П60 2, 3П60 5, 3П60 2, 3П60		С-2 Ч А КПЗ КПЗ КП КП КП	С НЕ 327 (П3 160 160	T H B, 346	KI B9	3 T 10. 132	Ο Ι ΠΕ 7Γ 	P A B b	я хіх	T	`PA	A Hi	3 M	CT	**************************************	· · · · · · · · · · · · · · · · · · ·	184 186 187 189 191 192 194 196 199 201 203 205 207 210 -212 214
СПРАВ КПЗ27А 2П333А, КП346А 2П601А 2П706А, КП922А, 2П928А, 2П933А, КП346А 3П606А-31606А-31608А-31608А-31927А	р-п-р 6-2, 2Т6 ОЧНЫІ , КП32; 2П333 9, КП3 9, КП704 2П706I КП704 2П928; 2П933; КП934 2, 3П60 2, 3П60 5, 3П60 2, 3П60		С-2 Ч А КПЗ КПЗ КП КП КП	С НЕ 327 (П3 160 160	T H B, 346	KI B9	3 T 10. 132	Ο Ι ΠΕ 7Γ 	P A B b	я хіх	T	`PA	A Hi	3 M	CT	**************************************	· · · · · · · · · · · · · · · · · · ·	184 186 187 189 191 192 194 196 199 201 203 205 207 210 -212 214
СПРАВ КПЗ27А 2П333А, КП346А 2П601А 2П706А, КП922А, 2П928А, 2П933А, КП346А 3П606А-31606А-31608А-31608А-31927А	р-п-р 6-2, 2Т6 ОЧНЫІ , КП32; 2П333 9, КП3 9, КП704 2П706I КП704 2П928; 2П933; КП934 2, 3П60 2, 3П60 5, 3П60 2, 3П60		С-2 Ч А КПЗ КПЗ КП КП КП	С НЕ 327 (П3 160 160	T H B, 346	KI B9	3 T 10. 132	Ο Ι ΠΕ 7Γ 	P A B b	я хіх	T	`PA	A Hi	3 M	CT	**************************************	· · · · · · · · · · · · · · · · · · ·	184 186 187 189 191 192 194 196 199 201 203 205 207 210 -212 214
СПРАВ КПЗ27А 2ПЗЗЗА, КПЗ46А 2П601А КП704А, 2П706А,	р-п-р 6-2, 2Т6 ОЧНЫІ , КП32; 2П333 9, КП3 9, КП704 2П706I КП704 2П928; 2П933; КП934 2, 3П60 2, 3П60 5, 3П60 2, 3П60		С-2 Ч А КПЗ КПЗ КП КП КП	С НЕ 327 (П3 160 160	T H B, 346	KI B9	3 T 10. 132	Ο Ι ΠΕ 7Γ 	P A B b	я хіх	T	`PA	A Hi	3 M	CT	**************************************	· · · · · · · · · · · · · · · · · · ·	184 186 187 189 191 192 194 196 199 201 203 205 207 210 -212 214

Предисловие

Настоящий справочник является дополнением к выпущенным в 1989 г. издательством «Радио и связь» справочникам «Полупроводниковые приборы. Транзисторы малой мощности» и «Полупроводниковые приборы. Транзисторы средней и большой мощности». прошедшее время отечественной электронной промышленностью разработано и освоено в серийном производстве более сотни типов транзисторов, предназначенных для использования во входных каскадах усилителей, в выходных каскадах усилителей мощности, операционных, дифференциальных и импульсных усилителях, селекторах телевизионных приемников, генераторах кадровой и строчной разверток, низковольтных и высоковольтных преобразователях и стабилизаторах постоянного напряжения, электронных регуляторах напряжения, переключающих устройствах, устройствах управления газоразрядными панелями переменного тока, устройствах зажигания двигателей внутреннего сгорания и др.

Целью справочника является ознакомление читателей с указанными новинками электронной техники. Предполагается выпустить несколько

таких дополнений.

В справочнике приводятся электрические и эксплуатационные характеристики и параметры транзисторов. Справочные данные о транзисторах составлены на основе сведений, зафиксированных в государственных стандартах и технических условиях на конкретные типы

приборов.

Сохранена форма представления данных в виде отдельных справочных листов на каждый тип прибора, а также зарекомендовавшая себя положительно структура представления данных, принятая в указанных выше справочниках: приведены краткие сведения о технологии, основном назначении, габаритных и присоединительных размерах, маркировке, значениях параметров и их зависимостях от условий эксплуатации, режимах измерения, предельных эксплуатационных режимах и условиях работы приборов.

Для некоторых типов модернизированных транзисторов (кристалл в новом корпусе), сведения о которых публиковались в вышедших ранее справочниках, с целью сокращения объема зависимости параметров

от электрических режимов не приводятся.

Справочник не заменяет технических условий, утвержденных в установленном порядке, и не является юридическим документом для предъявления рекламаций.

Условные обозначения электрических параметров

 $U_{
m K9}$ — постоянное напряжение коллектор—эмиттер $U_{\text{K} \ni 0, rp}$ — граничное напряжение $\widecheck{U}_{\mathsf{K}\mathfrak{Z}}^{\mathsf{F},\mathsf{F}}$ — постоянное напряжение коллектор—эмиттер при токе базы, равном нулю $U_{\mathrm{K} \ni R}$ — постоянное напряжение коллектор—эмиттер при заданном сопротивлении в цепи база-эмиттер $U_{
m KЭK}$ — постоянное напряжение коллектор—эмиттер при короткозамкнутых выводах базы и эмиттера . $U_{\rm KЭX}$ — постоянное напряжение коллектор—эмиттер при заданном обратном напряжении база-эмиттер $U_{ extbf{K}
extbf{3} extbf{R}, extbf{n}}$ — импульсное напряжение коллектор—эмиттер при заданном сопротивлении в цепи база -- эмиттер $U_{\mathrm{K} \ni \mathrm{K}, \, \mathrm{H}}$ — импульсное напряжение коллектор—эмиттер при короткозамкнутых выводах базы и эмиттера $U_{\mathrm{K3X, \, H}}$ — импульсное напряжение коллектор — эмиттер при заданном обратном напряжении база-эмиттер $U_{ extbf{K} extbf{3} extbf{0},\, extbf{npo6}}$ — пробивное напряжение коллектор—эмиттер при токе базы, равном нулю $U_{{
m K9},\,R,\,{
m проб}}$ — пробивное напряжение коллектор—эмиттер при заданном сопротивлении в цепи база-эмиттер $U_{\text{KЭК, проб}}$ — пробивное напряжение коллектор—эмиттер при короткозамкнутых выводах базы и эмиттера $U_{
m K3X,\,npo6}$ — пробивное напряжение коллектор—эмиттер при заданном обратном напряжении база-эмиттер $U_{\text{KO. макс}}$ — максимально допустимое постоянное напряжение коллектор-эмиттер $U_{K3, n, \text{макс}}$ — максимально допустимое импульсное напряжение коллектор-эмиттер U_{KB} — постоянное напряжение коллектор—база $U_{\mathrm{KB,\,H}}$ — импульсное напряжение коллектор—база *U***_{КБ 0, проб** — пробивное напряжение коллектор—база при токе} базы, равном нулю $U_{\mathrm{KB,\, Makc}}$ — максимально допустимое постоянное напряжение коллектор-база $U_{\mathsf{KB},\,\mathsf{H},\,\mathsf{Makc}}$ — максимально допустимое импульсное напряжение коллектор-база $U_{{
m 35~0,~npo6}}$ — пробивное напряжение эмиттер—база при токе базы, равном нулю U_{35} — постоянное напряжение эмиттер—база $\Delta U_{\mathrm{B}\mathrm{B}}$ — падение напряжения на участке база—эмиттер $U_{\rm ЭБ, \ макс}$ — максимально допустимое постоянное напряжение эмиттер-база $U_{
m CM}$ — напряжение сток—исток $U_{\rm 3H}^{\rm CR}$ — напряжение затвор—исток $U_{\rm HR}$ — напряжение исток—подложка $U_{
m CH,\, Makc}$ — максимально допустимое напряжение сток—исток $U_{
m 3H,\; Make}$ — максимально допустимое напряжение затвор—исток $U_{3C, \text{ макс}}$ — максимально допустимое напряжение затвор—сток $U_{\rm C\Pi, \, makc}$ — максимально допустимое напряжение сток—подложка $U_{
m M\Pi,\, makc}$ — максимально допустимое напряжение исток—под-

```
I_{\mathrm{K,\,Hac}} — постоянный ток коллектора в режиме насыщения
     I_{\rm B, \, Hac} — постоянный ток базы в режиме насыщения
    I_{K, \text{ макс}}^{-,--} — максимально допустимый постоянный ток коллектора
    I3. макс — максимально допустимый постоянный ток эмиттера
    I_{\mathsf{B},\;\mathsf{Make}} — максимально допустимый постоянный ток базы
  I_{
m K,\,H,\,Makc} — максимально допустимый импульсный ток коллек-
            тора
  I_{\rm Э. \, H. \, Makc} — максимально допустимый импульсный ток эмнт-
              тера
    I_{\mathsf{C},\;\mathsf{Makc}} = \mathsf{Makcumansho} допустимый постоянный ток стока
     I_{\mathsf{C,\,oct}} — остаточный ток стока
I_{3 \text{ (пр), макс}} — максимально допустимый прямой ток затвора
  I_{
m C,\, u,\, макс} — максимально допустимый импульсный ток стока
         \overline{C}_r — емкость генератора
        C_9 — емкость эмиттерного перехода
        C_{\kappa} — емкость коллекторного перехода
     C_{11} — входная емкость полевого транзистора
      C_{22} и — выходная емкость полевого транзистора
      C_{12} — проходная емкость полевого транзистора
      C_{{\it 3c}\;0} — емкость затвор—сток при отсоединенном выводе
             истока
      C_{3H\ 0} — емкость затвор—исток при отсоединенном выводе
          f — частота
        frp — граничная частота коэффициента передачи тока
              в схеме с общим эмиттером (ОЭ)
       K_{vP} — коэффициент усиления по мощности биполярного
               (полевого) транзистора
        K_{\rm in} — коэффициент шума биполярного (полевого) тран-
              зистора
      K_{
m Hac} — коэффициент насыщения K_{
m cr} \, _U — коэффициент стоячей волны по напряжению
          l — длина выводов
         Р — постоянная рассеиваемая мощность биполярного
               (полевого) транзистора
       P_{\rm cp} — средняя рассеиваемая мощность биполярного (поле-
              вого) транзистора
         P<sub>н</sub> — импульсная рассеиваемая мощность биполярного
               (полевого) транзистора
        P_{\rm K} — постоянная рассеиваемая мощность коллектора
     P_{K, cp} — средняя рассеиваемая мощность коллектора
        P<sub>вх</sub> — входная мощность биполярного (полевого) тран-
               зистора
   P_{\rm BX \ (no)} — входная мощность в пике огибающей (средняя
               мощность однотонового сигнала с амплитудой, рав-
               ной амплитуде двухтонового сигнала в пике оги-
               бающей)
```

 $U_{3\Pi,\,\mathrm{макс}}$ — максимально допустимое напряжение затвор—под-

 $\overline{I}_{ extsf{kp}}$ — критический ток биполярного транзистора

ложка

 $I_{\rm K}$ — постоянный ток коллектора $I_{
m 3}$ — постоянный ток эмиттера $I_{
m K}$ — постоянный ток базы $I_{
m K,\, u}$ — импульсный ток оллектора $I_{
m 3,\, u}$ — импульсный ток эмиттера $I_{
m 6,\, u}$ — импульсный ток базы

 $P_{{ t Bых}\;({ t no})}$ — выходная мощность в пике огибающей (средняя мощность однотонового сигнала с амплитудой, равной амплитуде двухтонового сигнала в пике огибающей) $P_{\text{пад}}$ — мощность падающей волны СВЧ сигнала Р — максимально допустимая постоянная рассеиваемая мощность биполяриого (полевого) транзистора P_{н. макс} — максимально допустимая импульсная рассеиваемая мощность биполярного (полевого) транзистора $P_{\mathbf{K.\,H.\,Make}}$ — максимально допустимая импульсная рассеиваемая мощность коллектора $P_{\mathbf{K},\,\mathsf{ep},\,\mathsf{макc}}$ — максимально допустимая средняя рассеиваемая мощность коллектора Q — скважность R_{κ} — сопротивление в цепи коллектор—источник питания **R**63 — сопротивление в цепи база — эмиттер R_6 — сопротивление в цепи база —источник питания $R_{\rm H}$ — сопротивление нагрузки $R_{\rm r}$ — выходное сопротивление генератора при измерениях R_T — тепловое сопротивление . $R_{T (n-\kappa)}$ — тепловое сопротивление переход—корпус $R_{T_{\perp}N}$ (п-к) — импульсное тепловое сопротивление переход—корпус $R_{T (n-c)}$ — тепловое сопротивление переход—среда h_{213}, h_{213} — статический коэффициент передачи тока в режимах малого и большого сигналов S₁₂₆ — коэффициент обратной передачи напряжения в схеме с общей базой ОБ) $|S_{126}|$ — модуль коэффициента обратной передачи напряжения в схеме ОБ S_{213} — коэффициент прямой передачи напряжения в схеме ОЭ S_{226} — коэффициент отражения выходной цепи в схеме ОБ T — температура окружающей среды T_{κ} — температура корпуса, для бескорпусных транзисторов кристаллодержателя (подложки) T_n — температура p-n перехода η - коэффициент полезного действия коллектора ηс - коэффициент полезного действия стока t_{вкл} — время включения

 $t_{\scriptscriptstyle
m BЫКЛ}$ — время выключения

 $t_{_{3 \rm A}}$ — время задержки

 $t_{\rm HD}$ — время нарастания

 $t_{\rm pac}$ — время рассасывания

 $t_{\rm cn}$ — время спада

 $t_{\rm H}$ — длительность импульса

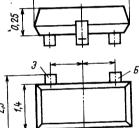
 $t_{\rm th}$ — длительность фронта импульса

Звездочкой в тексте отмечены значения параметров, приведенные справочных данных ТУ. При производстве полупроводниковых приборов они могут не контролироваться.

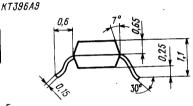
Значения эксплуатационных данных, приведенных без указания температурного диапазона, справедливы во всем интервале темпе-

ратур окружающей среды для данного типа транзистора.

Значения электрических параметров, приведенные без специального указания температуры окружающей среды (температуры корпуса), справедливы для температуры +25 °C.


СПРАВОЧНЫЕ ДАННЫЕ БИПОЛЯРНЫХ **ТРАНЗИСТОРОВ**

Раздел первый Транзисторы маломощные сверхвысокочастотные

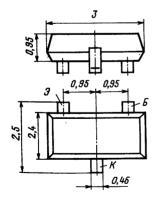

Транзисторы п-р-п

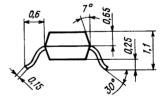
KT396A9

0.46

Транзистор кремниевый эпитаксиально-планарный структуры п-р-п усилительный. Предназначен для применения в усилителях СВЧ. Выпускается в пластмассовом корпусе с жесткими выводами. Маркируется зеленой точкой на корпусе. Тип прибора указывается в этикетке. Масса транзистора не более 0.05 г.

Электрические параметры


Статический коэффициент передачи тока в схеме ОЭ при $U_{KB}=2$ В, $I_{K}=5$ мА: 40...250 $T = +25 \, ^{\circ}C$ 40...500 $T = +100 \, ^{\circ}\text{C}$. 20...250 $T = -60 \,^{\circ}\text{C}$. Модуль коэффициента передачи тока на высокой частоте при $U_{KB} = 2$ В, $I_3 = 5$ мА, f = 300 МГц, не 15 B Постоянная времени цепи обратной связи на высокой частоте при $\dot{U}_{\rm KB}{=}2$ В, $I_9{=}5$ мА, $f{=}30$ МГц, не бо-15 пс лее


не более	2 пФ
Ениость эмиттерного перехода при $U_{26}=1$ В, не	
	2,5 пФ
Входное сопротивление в режиме малого сигнала в	
схеме ОБ при U_{KB} =2 В, I_{3} =5 мА, f =501000 Гц,	11 О́м
не более	11 0
Обратный ток комектора при $C_{KB} = 10 D$, не обмес $T = +25 ^{\circ}\text{C}$	0,5 мкА
$T = \pm 100 ^{\circ}\text{C}$	5 мкА
Обратный ток эмиттера при $U_{\rm 3B}{=}3$ В, не более	1 mkA
•	
Предельные эксплуатационные данны	чe
Постоянное напряжение коллектор-база	15 B
TOTAL CONTROL OF THE PROPERTY	
Постоянное напряжение коллектор — эмиттер при	
Постоянное напряжение коллектор — эмиттер при $R_{59}=3$ кОм	15 B
R _{БЭ} =3 кОм	3 B
R _{БЭ} =3 кОм	3 B
R _{БЭ} =3 кОм	3 В 40 мА
R _{БЭ} =3 кОм	3 В 40 мА
$R_{59}=3$ кОм . Постоянное напряжение эмиттер — база . Постоянный ток коллектора	3 В 40 мA 100 мВт 25 мВт
$R_{59}=3$ кОм . Постоянное напряжение эмиттер — база . Постоянный ток коллектора	3 B 40 mA 100 mBt 25 mBt +125 °C
$R_{59}=3$ кОм . Постоянное напряжение эмиттер — база . Постоянный ток коллектора	3 B 40 mA 100 mBr 25 mBr +125 °C 1 °C/mBr

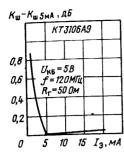
Емкость коллекторного перехода при $U_{\rm KB}{=}5$ В,

KT3106A9

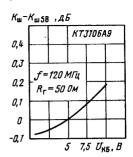
KT3106A9



Транзистор кремниевый эпитаксиально-планарный структуры *п-р-п* усилительный. Предназначен для применения во входных и последующих каскадах усилителей высокой частоты. Выпускается в пластмассовом корпусе с жесткими выводами. Маркируется синей точкой на корпусе. Тип прибора указывается в этикетке. Масса транзистора не более 0,05 г.

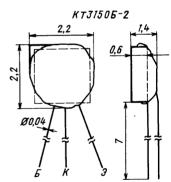

Электрические параметры

Svickipi icekiic iiupume ipu	
Коэффициент шума на частоте f = 120 МГц при $U_{\rm KB}$ = 5 В, $I_{\rm 3}$ = 5 мА, $R_{\rm r}$ = 50 Ом, не более	2 дБ 1,4* дБ
$f=120$ МГц при $U_{\rm KB}=5$ В, $I_9=5$ мА, $R_{\rm r}=50$ Ом, типовое значение	19* дБ
ОЭ при $U_{\rm KB}\!=\!1$ В, $I_{\rm K}\!=\!5$ мА, не менее: $T\!=\!+25$ и $+100^{\circ}{\rm C}$	40 20
частоте при $U_{Kb}{=}2$ В, $I_{9}{=}5$ мА, $f{=}100$ М Γ ц, не менее	9
частоте при $U_{\rm KB}{=}5$ В, $I_9{=}10$ мА, $f{=}30$ МГц, не более	10 пс
более	2,5 πΦ
Емкость эмиттерного перехода при U_{3b} =1 В, не облее	3 пФ
Обратный ток комлектора при $O_{KB} = 13$ В, не облее: $T = +25^{\circ}\text{C}$ $T = +100^{\circ}\text{C}$	0,5 мкА 5 мкА
Обратный ток эмиттера при $U_{\mathrm{ЭБ}}{=}3~\mathrm{B}$, не более	1 мкА
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор база	15 B
Постоянное напряжение коллектор — эмиттер при $R_{\rm B9}{=}10~{\rm кOm}$	15 B 3 B 20 mA 40 mA
Температура окружающей среды	25 мВт +1 2 5°С 1°С/мВт


 $^{^{\}rm I}$ При изменении температуры окружающей среды от +25 до $+100~^{\rm C}$ $P_{\rm K,\ Makc}$ уменьшается линейно.

Зависимость статического коэффициента передачи тока от тока коллектора

Зависимость коэффициента шума от тока эмиттера

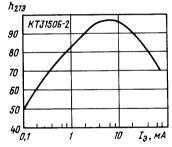


Зависимость коэффициента шума от напряжения коллектор-база

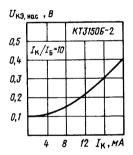
Транзисторы р-п-р

КТ3150Б-2

Транзистор кремниевый эпитаксиально-планарный туры р-п-р усилительный. Предназначен для применения в усилителях высокой частоты. Бескорпусной на кристаллодержате-, ле с защитным покрытием и гибкими выводами. Тип прибора указывается в этикетке. Масса транзистора не более 0,02 г.

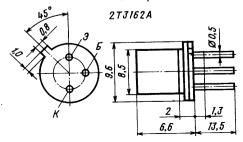


Электрические параметры	
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB} = 5$ В, $I_{3} = 2.5$ мА	60180
Модуль коэффициента передачи тока на высокой	
частоте при $U_{KB} = 5 \text{ B}$, $I_2 = 10 \text{ мA}$, $f = 100 \text{ M}\Gamma_{II}$.	1215*17*
Напряжение насыщения коллектор — эмиттер при	
$I_{K}=10 \text{ MA}, I_{B}=1 \text{ MA}.$	0,1*0,14*
11	0,25 B
Напряжение насыщения база—эмиттер при I_{K}	
= 10 MA, I_{B} =1 MA	0,8*0,85*1,2 B
Время рассасывания при $I_V = 10$ мА. $I_S = 1$ мА.	16*20*30* нс
постоянная времени цепи обратной связи на высо-	
кой частоте при U_{KB} =5 В, I_{9} =5 мА, f =30 МГц	4*7*30 пс

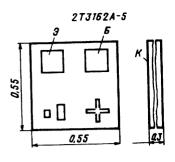

Емкость коллекторного перехода при $U_{\rm KB}\!=\!10~{\rm B}$	1,1*1,3*2 пФ
Обратный ток эмиттера при $U_{\mathrm{ЭБ}}{=}4~\mathrm{B}$	0,001*0,005* 0,5 mkA

Предельные эксплуатационные данные	
Постоянное напряжение коллектор — база	40 B
Постоянное напряжение коллектор — эмиттер при	
$R_{\rm BH} = 10$ кОм	35 B
Постоянное напряжение эмиттер — база	4 B
Постоянный ток колектора	30 mA
Импульсный ток коллектора при $t_u = 10$ мкс, $Q = 2$.	50 мА
Постоянная рассеиваемая мощность коллектора:	
T = -60 + 65 °C	120 мВт
$T = +85 ^{\circ}\text{C}$	88 мВт
Температура p - n перехода	+125 °C
Тепловое сопротивление переход — среда	0,45 °С/мВт
Температура окружающей среды	−60+85 °C

При измерении температуры окружающей среды от $+65\,$ до $+85\,$ °C $P_{\rm K,\; макс}$ уменьшается линейно.



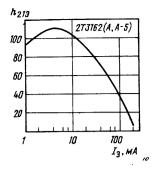
Зависимость статического коэффициента передачи тока от тока . эмиттера



Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

2T3162A, 2T3162A-5

Транзисторы кремниевые эпитаксиально-планарные структуры *p-n-p* универсальные. Предназначены для применения в усилительных и переключающих устройствах ВЧ и СВЧ диапазонов длин волн. Выпускаются в металлостеклянном корпусе с гибкими выводами (2Т3162A) и в бескорпусном оформлении на пластине, кристаллы неразделенные. Тип прибора указывается на корпусе и в этикетке. Масса транзистора в корпусе не более 0,5 г, бескорпусного — 0,0025 г.

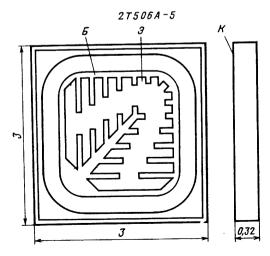

Электрические параметры

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB} = 3$ В: при $I_{\rm 3} = 10$ мА:	
$T = +25 ^{\circ}\text{C}$	60100*200
$T = +125 ^{\circ}\text{C}$	42600 18 240
прн 19=50 мА	2560*80
Модуль коэффициента передачи тока на высокой частоте при $U_{\rm KB}{=}20~{\rm B}, I_{3}{=}10~{\rm mA}, f{=}100~{\rm M}\Gamma{\rm q}$	713*16*
Напряжение насыщения коллектор — эмиттер при I_{K} =10 мA, I_{B} =1 мA	
Время рассасывания при $I_{\rm K} = 10$ мА, $I_{\rm B} = 1$ мА	0,25 В 40*80*100* нс
Постоянная времени цепи обратной связи на высокой	
частоте при $U_{KB} = 10 \text{ B}$, $I_9 = 10 \text{ мA}$, $f = 30 \text{ M} \Gamma \mu$	8*20*150 пс
Емкость коллекторного перехода при $U_{\rm KB} \! = \! 10 \; {\rm B}$ Емкость эмиттерного перехода при $U_{\rm 3B} \! = \! 1 \; {\rm B}$	1,4"1,6"5 πΨ 3*4.5*6 πΦ
Обратный ток коллектора при $U_{\rm KB} = 60$ В, не более:	5,oo
$T = +25 ^{\circ}\text{C}$	0,5 мкА
$T = +125 ^{\circ}\text{C}$	15 мкА
$T=+25^{\circ}\text{C}$	0,5 мкА
$T = +125 ^{\circ}\text{C} \dots \dots \dots \dots \dots \dots$	15 мкА

Предельные эксплуатационные данные

Постоянное напряжение коллектор — база	60 B
Постоянное напряжение коллектор — эмиттер при	
<i>R</i> _{БЭ} =5 кОм	60 B
Постоянное напряжение эмиттер — база	4 R
Постоянный ток коллектора	150 wA
Постоянная рассеиваемая мощность коллектора при	100 MA
T = -60 105 °C	200 D-
T = −60+25 °C Температура окружающей среды	300 MBT
температура окружающей спелы	—60 + 125 °C

 $^{^{\}rm I}$ При $T\!\!>+25\,^{\rm o}$ С $P_{\rm K.\, макс}$ снижается на 2 мВт/°С.

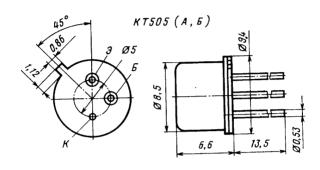

Зависимость статического коэффициента передачи тока от тока эмиттера

Раздел второй Транзисторы средней мощности низкочастотные

Транзисторы п-р-п

2T506A-5

Транзистор кремниевый планарный структуры *n-p-n* переключательный. Предназначен для применения в переключающих устройствах, импульсных модуляторах; преобразователях, линейных стабилизаторах напряжения. Бескорпусный, кристаллы на пластине неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0,0066 г.

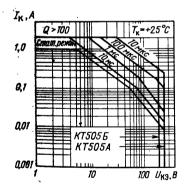

Статический коэффициент передачи тока в схеме ОЭ	
при U _{Kb} =5 В, I _Э =0,3 А:	
T=+25 °C	3080*150*
T— 125 °C не менее	30
T=-60 °C, He MeHee	10
Граничная частота коэффициента передачи тока в	•
Траничная частога коэффициента передачи тока в	1017*21* МГц
схеме ОЭ при $U_{K9} = 10$ В, $I_{K} = 30$ мА	
Граничное напряжение при $I_3 = 30$ мА, не менее	4 0 0 B
Напряжение насыщения коллектор — эмиттер при	0.454 0.054
$I_{\rm K} = 0.3 \text{ A}, I_{\rm B} = 0.03 \text{ A} \dots$	0,15*0,35*
" ,	0,6 B
Напряжени е насыщения база — эмиттер при I_{K}	
=0,3 A, $I_{\rm B}$ =0,03 A	0,7*0,8*1* B
Время включения при U_{K3} =200 В, I_{K} =1 А, I_{B} =0,2 А	0,08*0,19*
Бремя выпочения при о (3—200 В, 1 (—1 11, 1 Б—0,2 11	0,25 мкс
B pagaggupguug HDH // 200 B / 1 A /	0,20 MRC
Время рассасывания при U_{K9} =200 В, I_{K} =1 А, I_{B} =	0,8*2,5*
=0,2 A	
71 200 P. I. A. I. O. A.	3,5 мкс
Время спада при U_{K9} =200 В, I_{K} =1 А, I_{B} =0,2 А	0,2*0,35*
	0,5 мкс
Емкость коллекторного перехода при $U_{\mathrm{KB}}{=}5~\mathrm{B}$	25*30*4 0 * пФ
Емкость э миттерного перехода при $U_{\partial B} = 0.5 \text{ B}$	94*350*
	1100* пФ
Обратный ток коллектора не более:	
$T=+25$ °C, $U_{KB}=800$ B	1 мА
T 195 °C W -400 B	0.4 1
	U,4 MA
7=+120 С, U _{KB} =400 В	U,4 MA 1 MΔ
$T = +125$ С, $U_{KB} = 400$ В	0,4 мA 1 мA
$V = +125$ С, $V_{KB} = 400$ В	1 мА
Обратный ток эмиттера при ${ m U_{3B}}{=}5~{ m B}$, не более . Предельные эксплуатационные данни	1 мА
Обратный ток эмиттера при U_{35} =5 B, не более	1 мA ые
Обратный ток эмиттера при U_{35} =5 В, не более . Предельные эксплуатационные дання Постоянное напряжение коллектор — база при dU_{NB}/dt =1600 В/мкс .	1 мА
Обратный ток эмиттера при U_{35} =5 B, не более	1 мА ые 800 В
Обратный ток эмиттера при U_{35} =5 В, не более	1 мA ые
Обратный ток эмиттера при $U_{3B} = 5$ В, не более	1 мА ые 800 В 800 В
Обратный ток эмиттера при $U_{3B} = 5$ В, не более	1 мА ые 800 В 800 В 800 В
Обратный ток эмиттера при $U_{3B}{=}5$ В, не более	1 мА ые 800 В 800 В 800 В 5 В
Обратный ток эмиттера при U_{3b} =5 В, не более	1 MA bie 800 B 800 B 800 B 5 B 2 A
Обратный ток эмиттера при U_{3b} =5 В, не более	1 MA bie 800 B 800 B 800 B 5 B 2 A 5 A
Обратный ток эмиттера при U_{3B} =5 В, не более	1 MA bie 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A
Обратный ток эмиттера при U_{3B} =5 В, не более . Предельные эксплуатационные данн Постоянное напряжение коллектор — база при dU_{KB}/dt =1600 В/мкс . Постоянное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом . Импульсное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом, t_{u} =50 мкс . Постоянное напряжение эмиттер — база . Постоянный ток коллектора . Импульсный ток коллектора . Импульсный ток базы	1 MA bie 800 B 800 B 800 B 5 B 2 A 5 A
Обратный ток эмиттера при U_{3B} =5 В, не более	1 MA bie 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A
Обратный ток эмиттера при $U_{3B}{=}5$ В, не более	1 MA 800 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A
Обратный ток эмиттера при $U_{3B}{=}5$ В, не более	1 MA bie 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A
Обратный ток эмиттера при $U_{3B} = 5$ В, не более	1 MA 800 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A
Обратный ток эмиттера при U_{3B} =5 В, не более. Предельные эксплуатационные данни Постоянное напряжение коллектор — база при dU_{KB}/dt =1600 В/мкс. Постоянное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом. Импульсное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом, t_{u} =50 мкс. Постоянное напряжение эмиттер — база Постоянный ток коллектора. Импульсный ток коллектора. Импульсный ток базы Импульсный ток базы Импульсный ток базы Постоянная рассеиваемая мощность коллектора: при температуре подложки —60+25 °C (с теплоотводом) при температуре окружающей среды —60	1 MA 800 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A
Обратный ток эмиттера при U_{3B} =5 В, не более. Предельные эксплуатационные данни Постоянное напряжение коллектор — база при dU_{KB}/dt =1600 В/мкс. Постоянное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом. Импульсное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом, t_{u} =50 мкс. Постоянное напряжение эмиттер — база Постоянный ток коллектора. Импульсный ток коллектора. Импульсный ток базы Импульсный ток базы Импульсный ток базы Постоянная рассеиваемая мощность коллектора: при температуре подложки —60+25 °C (с теплоотводом) при температуре окружающей среды —60	1 MA 500 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A
Обратный ток эмиттера при U_{3B} =5 В, не более. Предельные эксплуатационные данни Постоянное напряжение коллектор — база при dU_{KB}/dt =1600 В/мкс. Постоянное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом. Импульсное напряжение коллектор — эмиттер при dU_{K3}/dt =1600 В/мкс, R_{59} =10 Ом, t_{u} =50 мкс. Постоянное напряжение эмиттер — база Постоянный ток коллектора. Импульсный ток коллектора. Импульсный ток базы Импульсный ток базы Импульсный ток базы Постоянная рассеиваемая мощность коллектора: при температуре подложки —60+25 °C (с теплоотводом) при температуре окружающей среды —60	1 MA 800 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A
Предельные эксплуатационные данни Постоянное напряжение коллектор — база при dU_{KB}/dt =1600 B/мкс	1 MA 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A 10 BT
Предельные эксплуатационные данни Постоянное напряжение коллектор — база при $dU_{KB}/dt=1600$ В/мкс	1 MA 800 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A 10 BT 0,8 BT
Предельные эксплуатационные данни Постоянное напряжение коллектор — база при dU_{KB}/dt =1600 B/мкс	1 MA 800 B 800 B 800 B 800 B 5 B 2 A 5 A 0,5 A 1 A 10 BT 0,8 BT

 $^{^{1}}$ При $T_{\rm K}$ >+25 °С $P_{\rm K,\ макс}$ уменьшается на 0,08 Bт/°С. 2 При T>+25 °С $P_{\rm K,\ макс}$ уменьшается на 6,2 мВт/°С. 3 Прн T>+25 °С, $P_{\rm K,\ макс}$ уменьшается на 0,2 мВт/°С.

Транзисторы р-п-р

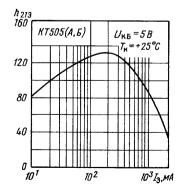
KT505A, KT505B

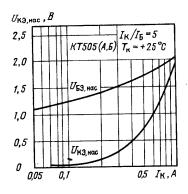
Транзисторы кремниевые планарные структуры *p-n-p* переключательные. Предназначены для применения в источниках вторичного электропитания и переключающих устройствах. Выпускаются в металлическом корпусе с гибкими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.



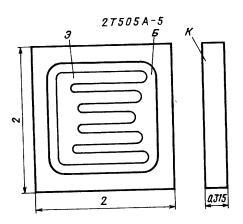
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}10$ В, $I_{\rm S}{=}500$ мА, не менее	25
Граничная частота коэффициента передачи тока в схеме $O3$ при $U_{\rm KE} = 10$ В, $I_3 = 50$ мА, не менее	20 ΜΓμ
Граничное напряжение при I _K =20 мA, не менее: КТ505A КТ505Б	250 B 200 B
Напряжение насыщения коллектор — эмиттер при $I_{\nu} = 0.5 \text{ A}$, $I_{2} = 0.1 \text{ A}$, не более	1,8 B
Напряжение насыщения база — эмиттер при $I_{\rm K}=$ = 0,5 A, $I_{\rm 3}=$ 0,1 A, не более	1,8 B
/ _Б =20 мА, не более	0,3 мкс 0,25* мкс
типовое значение . Время выключения при $U_{\rm K9}{=}40~{\rm B},~I_{\rm K}{=}200~{\rm mA},$ $I_{\rm B}{=}20~{\rm mA},$ не более	3,5 мкс 2.7* мкс
типовое значение . Емкость коллекторного перехода при $U_{\rm KB}{=}10~{\rm B},$ типовое значение	50* πΦ
Емкость эмиттерного перехода при U_{95} =0,5 В, типовое значение	420* пФ
Обратный ток коллектора при $U_{\rm KB}\!=\!U_{\rm KB,Makc}$, не более	100 мкА 100 мкА

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база:	
KT505A	
KT505B	
Постоянное напряжение коллектор — эмиттер:	
Постоянное наприжение коммектор — эмиттер. При $R_{\rm B9} = 100$ Ом:	
KT505A	
M. 1000 M	
К Т505Б	
при $R_{69} = \infty$:	
KT505A	
КТ5 05Б 200 В	
Постоянное напряжение база — эмиттер 5 В	
Постоянный ток коллектора 1 А	
Импульсный ток коллектора при $t_{\rm H} = 10$ мс 2 A	
Постояниый ток базы 0,5 А	
Постоянная рассеиваемая мощность коллектора при	
$T_{\rm r} = -60 + 25 ^{\circ}{\rm C}$:	
с теплоотводом ¹	
Температура <i>p-n</i> перехода	
Температура окружающей среды	
$= +100 ^{\circ}$ C	


 $^{^1}$ При $T_{\rm K}\!>+25\,^{\circ}{\rm C}$ $P_{\rm K,\, макс}$ уменьшается линейно до 2 Вт при $T_{\rm K}\!=\!+100\,^{\circ}{\rm C}.$ 2 При $T\!>+25\,^{\circ}{\rm C}$ $P_{\rm K,\, макс}$ уменьшается линейно до 0,4 Вт при $T\!=\!+100\,^{\circ}{\rm C}.$

Зависимость статического коэффициента передачи тока от тока эмиттера



Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора

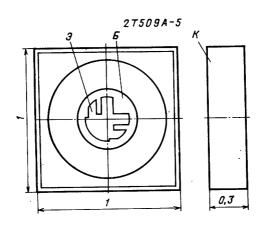
2T505A-5

Транзистор кремниевый планарный структуры *p-n-p* переключательный. Предназначен для применения в высоковольтных стабилизаторах напряжения и преобразователях. Бескорпусный, на пластине, кристаллы неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0,003 г.

Статический коэффициент передачи тока в схе	еме С	Э	
$I_{1} = -10 \text{ R} I_{2} = 0.5 \text{ A}$			of 100* 140*
$T = +25 ^{\circ}\text{C} $		٠	25120*140*
$T=\pm 125$ °C, he mehee			18
T = -60 °C, не менее			15
Граничная частота коэффициента передачи	тока	В	
схеме ОЭ при $U_{K9} = 10 \text{ B}, I_{V} = 50 \text{ мA}$.			2030*40* MΓ

Время включения при $U_{\rm K3}{=}40~{\rm B},~I_{\rm K}{=}0.2~{\rm A},I_{\rm B}{=}$	1,8* B
=0,02 A	0,2*0,25* 0,3 мкс
Время рассасывания при $U_{\rm K3}{=}40$ В, $I_{\rm K}{=}0.2$ А, $I_{\rm B}{=}0.02$ А	1,7*2,7* 3,5•мкс
Емкость коллекторного перехода при $U_{\rm KB} = 5~{\rm B}$. Емкость эмиттерного перехода при $U_{\rm 3B} = 0.5~{\rm B}$	0,7*1,6* 2,6 мкс 27*50*70* пФ 320*420*
Обратиый ток коллектора при $U_{\rm KB}{=}300~{\rm B}$, не более: $T{=}+25~{\rm ^{\circ}C}$	500 πΦ 100 мкA 500 мкA 100 мкA
o z, no souce	Too was
Предельные эксплуатационные данны	ыe
Постоянное напряжение коллектор — база при $dU_{KB}/dt = 250$ В/мкс	300 B
Постоянное напряжение коллектор — эмиттер при dU_{K3}/dt =250 В/мкс, R_{E3} =100 Ом	300 B
Постоянное напряжение эмиттер — база	5 B 1 A 2 A 0,5 A
лоотводом) ²	
вода) 3	1 Вт 25 мВт
Температура <i>p-п</i> перехода . Температура окружающей среды	+175 °C -60+125 °C
1 При $Q < 2$ $I_{\rm K, M, Makc} = I_{\rm K, Makc}Q$. 2 При изменении температуры корпуса от $+$ $P_{\rm K, Makc}$ уменьшается линейно на 0,04 Вт/°С. 3 При изменении температуры окружающей ср $+125$ °С $P_{\rm K, Makc}$ уменьшается линейно на 6,6 мВт/°С 4 При изменении температуры окружающей ср $+125$ °С $P_{\rm K, Makc}$ уменьшается линейно на 0,2 мВт/°С	реды от +25 до .

 $_{\rm 3}$ Граничное напряжение при $I_{\rm 3}$ = 20 мA, не менее . . 250 В


270* B

0,15*...0,7*...1,8 B

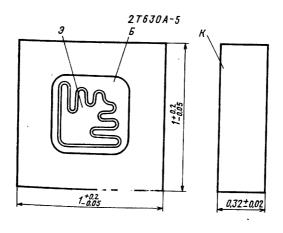
1,35*...1,6*... 18* R

2T509A-5

Транзистор кремниевый планарный структуры *p-n-p* усилительный. Предназначен для применения в высоковольтных стабилизаторах напряжения в качестве регулирующих элементов в микрорежиме. Бескорпусный, на пластине, кристаллы неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0,0007 г.

•	
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{VE} = 10 \text{ B}, I_{9} = 0.1 \text{ мA}$:	
T=+25°С T=+85°С, не менее T=-60°С не менее	15
Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{\rm K9}{=}10~{\rm B}, I_{\rm K}{=}0.5~{\rm mA},$ не менее	10 МГц 15* МГц
Напряжение насышения коллектор — эмиттер при	1 D
$I_{\rm K} = 100$ мкА, $I_{\rm B} = 10$ мкА, не более	1 B 0,55* B
Напряжение насыщения база — эмиттер при $I_{\rm K}=100$ мкА, $I_{\rm B}=10$ мкА, не более	1 B 0,58* B
Емкость коллекторного перехода при $U_{\rm KB} = 100$ В,	2.9* п Ф
не более E мкость эмиттерного перехода при $U_{36}{=}0.5$ B ,	2,0 11 1
6	25* пФ
Обратный ток коллектора при $U_{KB} = 500$ В, $T =$	5 мкA ·
195 _L85 °С не ролее	O MKA
$=+20+60$ G, ле солектор — эмиттер при $U_{\rm K3}=450$ В,	
$R_{69} = 10$ кОм, не более: T = +25 °C	10 мкА 15 мкА
Обратный ток эмиттера при $U_{\rm 35} = 5$ В, не более	

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база при	
$dU_{KB}/dt = 150 \text{ B/mkc}.$	500· B
Постоянное напряжение коллектор — эмиттер при	
$R_{69} = 10 \text{ kOm}, dU_{K9}/dt = 150 \text{ B/mkc}$	450 B
Постоянное напряжение эмиттер — база	5 B
Постоянный ток коллектора	20 мА
Постоянная рассеиваемая мощность коллектора:	
при температуре подложки $-60+25^{\circ}\text{C}$ (с	
теплоотводом)'	1 B _T
при температуре окружающей спелы —60	
± 25 °C (в условной микросхеме без теплоотвода) 2	
отвода) *	0,3 B _T
п ри т емпературе окружающей свелы <u>60</u>	
+25°C (кристалл без теплоотвода) ³	25 мВт
гемперат ура p - n перехода	±150 °C
Температура окружающей среды	-60+85 °C

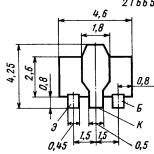
 $^{^1}$ При $T_{\rm K}\!\!>+25\,^{\circ}{\rm C}$ $P_{\rm K,\; Makc}$ уменьшается на 8 мВт/°С. 2 При $T\!\!>+25\,^{\circ}{\rm C}$ $P_{\rm K,\; Makc}$ уменьшается на 3,3 мВт/°С. 3 При $T\!\!>+25\,^{\circ}{\rm C}$ $P_{\rm K,\; Makc}$ уменьшается на 0,2 мВт/°С.

Раздел третий Транзисторы средней мощности высокочастотные

Транзисторы п-р-п

2T630A-5

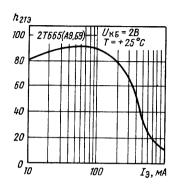
Транзистор кремниевый планарный структурный *n-p-n* универсальный. Предназначен для применения в элементах управления газоразрядной панелью переменного тока, силовых каскадах ключевых стабилизаторов и преобразователей в составе гибридных микросхем. Бескорпусный, на пластине, кристаллы неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0.005 г.

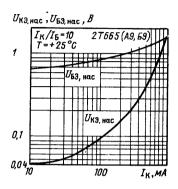

e e	e e e e e e e e e e e e e e e e e e e
^	1
- TEKTOUUECKUS	э папаметпы
Электрические	indpame i pm

Статический коэффициент передачи тока в схеме ОЭ при $U_{K9}{=}10$ В, $I_{K}{=}0,15$ А, не менее Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{K9}{=}10$ В, $I_{K}{=}0,05$ А, не менее Граничное напряжение при $I_{9}{=}30$ мА, не менее . Пробивное напряжение коллектор — база при $I_{K}{=}$ = 100 мкА, не менее	40 50 ΜΓμ 90 Β 120 Β 0,25 мкс 0,1* мкс 0,2* мкс 15 πΦ 100 мкА 100 мкА
Предельные эксплуатационные данн	
Постоянное напряжение коллектор — база	120 B 90 B 7 B 1 A 2 A 0,2 A 0,8 Br +150°C

2Т665А9, 2Т665Б9

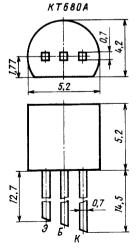
Транзисторы кремниевые эпитаксиально-планарные структуры *n-p-n* универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с жесткими выводами. Маркируются условными знаками: 2T665A9—2A, 2T665B9—2Б. Тип прибора указывается в этикетке. Масса транзистора не более 0,1 г.


27665 (A9, 59)



Статический коэффициент передачи тока в схеме ОЭ $U_{KB}=2$ В, $I_{9}=0.15$ А	40250
ехеме ОЭ при U_{KB} =5 В, I_{3} =50 мА, типовое зна- щение	200* МГц
2T665A9	80 B 60 B
Напряжение насыщения коллектор — эмиттер при $k=0,15$ А, $I_6=15$ мА, не более	0,3 B
Напряжение насыщения база — эмиттер при $I_{\rm K}=$ — 0,15 A, $I_{\rm B}=15$ мA, не более	1,1 B
время включения при $U_{K9}=20$ В, $I_{K}=0,2$ А, $I_{K}=0,2$ А, веремя выключения при $U_{K9}=20$ В, $I_{K}=0,2$ А,	0,1 мкс
время выключения при $U_{K3}=20$ В, $I_{K}=0.2$ А, $I_{E}=0.2$ В, $I_{K}=0.2$ А, $I_{E}=40$ мА, не более	0,5 мкс
ве более	0,2 мкс
более	25 πΦ
более Обратный ток коллектора при $U_{\rm KB} = 100~\rm B$, не более Обратный ток эмиттера при $U_{\rm 2B} = 5~\rm B$, не более	150 πΦ 10 мкA 10 мкA
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база: 2T665A9	120 B 100 B
при $R_{69}{=}1$ кОм: 2T665A9	100 B 80 B
при R_{69} =∞: 2T665A9 2T665B9	80 B 60 B
Постоянное напряжение эмиттер — база	5 B

Постоянный ток базы	0.3 A
Постоянная рассеиваемая мощность коллектора при	0,0
$T_{\rm K} = -60 + 25 ^{\circ}{\rm C}$:	•
с теплоотводом	1 B T
без теплоотвода	0.3 Вт
Температура p - n перехода	+150 °C
Температура окружающей среды	$-60 ^{\circ} \text{C} T_{\nu} =$
	= →100 °C ~

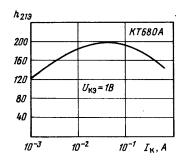


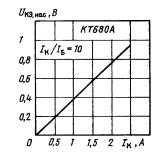
Зависимость статического коэффициента передачи тока от тока эмиттера

Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора

KT680A

Транзистор кремнневый эпитаксиально-планарный структуры *n-p-n* усилительный. Предназначен для применения в усилителях низкой частоты. Выпускается в пластмассовом корпусе с гибкими выводами. На корпуснаносится условная маркировка — уголок черного цвета и буква «А». Тип прибора указывается в этикетке. Масса транзистора не более 0,3 г.

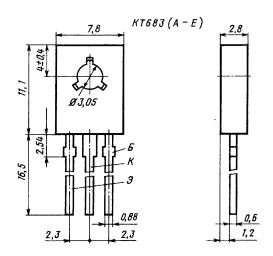

Электрические параметры


Статический коэффициент передачи тока в схеме ОЭ:	
при $U_{K9}=1$ В, $I_{K}=500$ мА:	
T=+25 °C	85180*300
$T = +85 ^{\circ}\text{C}$	
T=-45 °C	40300
при $U_{K9}=1$ В, $I_{K}=1$ А	60*150*
при $U_{K9} = 10 \text{ B}, I_{K} = 5 \text{ мA}.$	50*200*
при $U_{K3} = 5$ В, $I_{K} = 50$ мА, не менее	80*
Модуль коэффициента передачи тока на высокой час-	
тоте при $U_{K3} = 5$ В, $I_{K} = 50$ мА, $f = 100$ МГц, не менее	1,2
типовое значение	on and and and and and and and and and an
Напряжение насыщения коллектор — эмиттер:	
при $I_K = 1$ A, $I_B = 0,1$ A	0.27*0.4*0.5 B
при $I_{K} = 0,1 \text{ A}, I_{B} = 0,01 \text{ A} \dots \dots \dots$	
Напряжение насыщения база — эмиттер при $I_K = 1$ A,	o, o o o o o o o o o o o o o o o o o o
$I_{\rm B}$ =0,1 A	0.9*0.95*1.2 B
Обратный ток коллектора при $U_{\rm KB}{=}25~{\rm B}$, не более:	0,0 1110,00 1111,00 =
	10 мкА
T=+85 °C	500 мкА
Обратный ток эмиттера при $U_{36} = 5$ В, не более	
Coparinan for smarrepa liph C 36 — O D, lie conce.	10 MILL

Предельные эксплуатационные данные

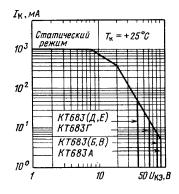
Постоянное напряжение коллектор — база	30 B
Постоянное напряжение коллектор — эмиттер	25 B
Постоянное напряжение база — эмиттер	5 B
Постоянный ток коллектора	0,6 A
Импульсный ток коллектора при $t_{\mu} = 20$ мс, $Q = 100$	2 A
Постоянный ток базы	100 мА
Импульсный ток базы при $t_{\rm H}$ =20 мс, Q =100	200 мА
Постоянная рассеиваемая мощность коллектора при	
$T \leqslant +25 ^{\circ}\text{C}$	0,35 Вт
Температура p - n перехода	+125 °C/B⊤
Тепловое сопротивление переход — среда	286 °C/B _T
Температура окружающей среды	

T>+25 °C $P_{K, \text{ макс}}$ снижается линейно на 3,5 мВт/°С.

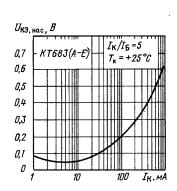


Зависимость статического коэффициента передачи тока от тока коллектора

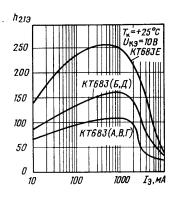
Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

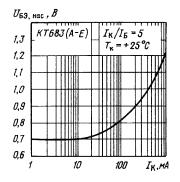

КТ683A, КТ683Б, КТ683В, КТ683Г, КТ683Д, КТ683Е

Транзисторы кремниевые планарные структуры *n-p-n* универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 1 г.



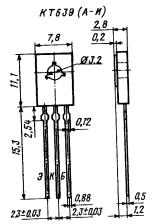
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{K9}=10$ В, $I_{K}=0.15$ А:	
ҚТ683A, ҚТ683B, ҚТ683Г	
КТ683Б, КТ683Д	
KT683E	160480
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{KB} = 10 \text{ B}$, $I_{9} = 50 \text{ мA}$, не менее	50 МГц
Граничное напряжение при $I_3 = 30$ мA, не менее:	
KT683A	90 B
KT683Б, KT683В	80 B
КТ683Γ	60 B
КТ683Д, КТ683Е	40 B
Напряжение насыщения коллектор — эмиттер при	
	0,45 B
Напряжение насыщения база — эмиттер при I_{K} =	
=0,15 A, I _Б =15 мA, не более	1 B
Пробивное напряжение коллектор — эмиттер при	
$I_{K}=0.1$ MA, $R_{69}=3$ KOM, He MeHee:	
KT683A	150 B
КТ683Б, КТ683В	120 B
КТ683Γ	100 B
КТ683Л : KT683F	60 B


Пробивное напряжение база — эмиттер при I_3 —	
=0,1 мА, не менее:	
KT683A, KT683B, KT683B	7 B
КТ683Г, КТ683Д, КТ683Е	
Время включения при U_{K9} =40 В, I_{K} =0,2 А, I_{B} =	
= 40 мA, типовое значение	0,1* мкс
Время выключения при $U_{K9}=40$ В, $I_{K}=0.2$ А,	
$I_{\rm B} = 40$ мA, типовое значение	0,2* мкс
Емкость коллекторного перехода при $U_{KB}=10$ В,	
не более	15* пФ
Емкость эмиттерного перехода при $U_{\rm ЭБ} = 0.5$ В,	
не более	65* пФ
Обратный ток коллектора при $U_{\rm KB} = 90$ В для	
Обратный ток коллектора при $U_{\rm KB}{=}90~{\rm B}$ для KT683A, KT683B, KT683B и 40 B для KT683Г,	_
КТ683Д, КТ683Е, не более	1 мкÅ


Области безопасной работы транзисторов

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

Зависимости статического коэффициента передачи тока от тока эмиттера


Зависимость напряжения насыщения база— эмиттер от тока коллектора

Предельные эксплуатационные данные

Постоянное напряжение коллектор — база:	
KT683A	150 B
KT683A	120 B
VTEOOF	100 B
KT683F	. 100 B
К1083Д, К1083Е	. 00 В
Постоянное напряжение коллектор — эмиттер:	
при R _{бэ} =3 кОм:	150 B
KT683A	. 150 B
KT683b, KT683B	. 120 В
КТ683Γ	. 100_B
К Т683Д, К Т68 3 Е	. 60 B
при $R_{69} = \infty$:	
KT683A	. 90 B
KT683Б, KT683В	. 80 B
KT683F	. 60 B
КТ683Д, КТ683Е	. 40 B
Постоянное напряжение база — эмиттер:	. 10 -
КТ683A, КТ683B, КТ683B	7 R
КТ683Г, КТ683Д, КТ683Е	5 B
К10831, K1083Д, K1003E	. J D
Постоянный ток коллектора	. I A
Импульсный ток коллектора при $t_{\rm H} = 1~{\rm Mc}$. Z A
Постоянный ток базы	. 0,2 A
Постоянная рассеиваемая мощность коллектора пр	И
$T_{\kappa} = -60 + 25 ^{\circ}\text{C}$:	
с теплоотводом	. 8 Вт
без теплоотвода.	. 1,2 Вт
Температура p - n перехода	. +150 °C
Температура окружающей среды	. $-60 ^{\circ}\text{C} T_{r} =$
1 71 1 17	$=+125 {}^{\circ}\text{C}^{\kappa}$

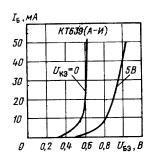
 $^{^1}$ При $T_{\rm K}{>}{+}25\,^{\rm o}{\rm C}$ Р $_{\rm K,\ Makc}$ снижается линейно на 0,064 Bт/°C с теплоотводом и на 0,0096 Bт/°C без теплоотвода.

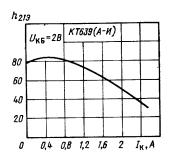
Транзисторы р-п-р

КТ639A, КТ639Б, КТ639В, КТ639Г, КТ639Д, КТ639Е, КТ639Ж, КТ639И

Транзисторы кремниевые эпитаксиально-планарные структуры *p-n-p* универсальные. Предназначены для применения в каскадах предварительного усиления и в переключающих устройствах. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 0,7 г.

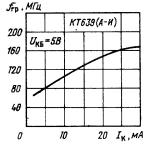
Электрические параметры

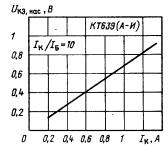

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}2$ В, $I_{\rm 3}{=}150$ мА:	
при $T = +25$ °C:	
ҚТ639A, ҚТ639Г, ҚТ639Е	40100
КТ639Б, КТ639Д, КТ639Ж	
KT639B	
КТ639И	180 400
при <i>T</i> =+125 °C	0.84
$inpn \ I = +125 \ C. $	
T 65.9C	3h _{21Э, макс}
при $T = -65$ °C, не менее	$0,3h_{219, \text{ мин}}$
Модуль коэффициента передачи тока на высокой	4 104 104
частоте при U_{KB} =5 В, I_{9} =30 мА, f =20 МГц	410*12*
Граничное напряжение при $I_3 = 50$ мA, не менее:	
КТ639A, КТ639Б, КТ639В	45 B
КТ639Г, КТ639Д	60 B
КТ639Ж	80 B
КТ639И	30 B
Напряжение насыщения коллектор — эмиттер при	
$I_{\rm K} = 500 \text{ MA}, I_{\rm B} = 50 \text{ MA}$	0,15*0,35*0,5 B
Напряжение насыщения база — эмиттер при $I_{\rm K}$	0,100,000,0 2
=500 MA, I _B =50 MA	0,92*0,96*
-000 MA, 16-00 MA	1,25 B
Prove passes and I was I was I was	1,20 B
Время рассасывания при I_{K} =500 мA, I_{B} =50 мA,	000*
типовое значение	200* нс
Емкость коллекторного перехода при $U_{\rm KB} = 10~{ m B}$	15*20*50 пФ
Емкость эмит терного перехода при $U_{\rm ЭБ} = 0.5~{\rm B}$	90*120*200 пФ
Обратный ток коллектора при $U_{KB} = 30$ В, не более:	
T=+25 °C	100 нА
$T = +125 ^{\circ}\text{C}$	100 мкА
Обратный ток эмиттера при $U_{\rm ЭБ}{=}5$ В, не более	100 нА


Предельные эксплуатационные данные

Постоянное напряжение коллектор — база:	
ҚТ639A, ҚТ639Б, ҚТ639В	45 B
КТ639Г, КТ639Д	60 B
КТ639И	30 B
Постоянное напряжение коллектор—эмиттер при	
R_{69} =1 кОм для КТ639Ж	100 B
Постоянное напряжение база — эмиттер	
Постоянный ток коллектора	1,5 A
Импульсный ток коллектора	2 A
Постоянная рассеиваемая мощность коллектора	
при $T = -60 + 35$ °C	1 Вт
Температура p - n перехода	+150 °C
Тепловое сопротивление переход — среда	
Температура окружающей среды	60 ±125 °C

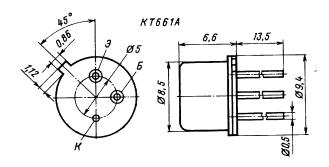
¹ При T>+35 °С постоянная рассеивающая мощность коллектора определяется из выражения


$$P_{K, \text{ Makc}}, B_T = \frac{150 - T}{115}.$$



Зависимости тока базы от напряжения база — эмиттер

Зависимость статического коэффициента передачи тока от тока коллектора



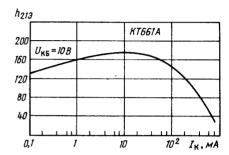
Зависимость граничной частоты от тока коллектора

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

KT661A

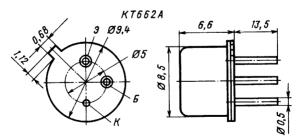
Транзистор кремниевый эпитаксиально-планарный структуры *p-n-p* импульсный. Предназначен для применения в быстродействующих ключевых устройствах электронных автоматических телефонных станций. Выпускается в металлическом корпусе с гибкими вывода-

ми и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более $0.5\,$ г.


Статический коэффициент передачи тока в схеме ОЭ: при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}150$ мА: $T{=}+25^{\circ}{\rm C}$	100175*300 100600 40300 75
при $I_{\rm K}{=}150$ мА, $I_{\rm B}{=}15$ мА	0,4 B 1,6 B 1,3 B
= 150 мА, $I_{\rm B}$ =15 мА, не более	15*30*45* нс 100*120* 150* нс
Емкость коллекторного перехода при $U_{\rm KB}{=}10~{\rm B}$. Обратный ток коллектора при $U_{\rm KB}{=}50~{\rm B}$, не более: $T{=}+25~{\rm u}-45~{\rm °C}$	4*6*8* пФ 0,01 мкА 1 мкА 50 нА
Обратный ток эмиттера при $U_{\rm ЭБ}{=}5$ В, не более	10 мкА
Предельные эксплуатационные данны	ie
Постоянное напряжение коллектор — база Постоянное напряжение коллектор — эмиттер	60 B 5 B
без теплоотвода	300 мА
с теплоотводом	0,4 BT +200 °C

 $T_{\rm K}>+25\,{\rm ^{\circ}C}$ постоянная рассеиваемая мощность коллектора определяется из выражения $P_{\rm K,\ Make}$, $B_{\rm T}=\frac{200-T_{\rm K}}{97}$.

 $^{^{2}}$ При T>+25 °С $P_{\text{K, макс}}$, $B_{\text{T}}=\frac{200-T}{440}$.

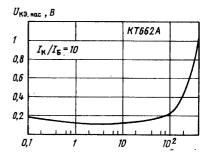

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

Зависимость статического коэффициента передачи тока от тока коллектора

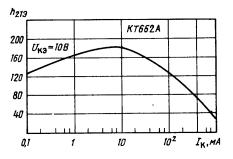
KT662A

Транзистор кремниевый эпитаксиально-планарный структуры *p-n-p* импульсный. Предназначен для применения в быстродействующих ключевых устройствах электронных автоматических телефонных станций. Выпускается в металлостеклянном корпусе с гибкими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 1,5 г.

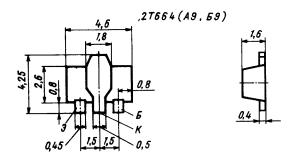
Электрические параметры


при $U_{\rm K3} = 10$ В, $I_{\rm K} = 500$ мА, не менее	50
при $U_{K3} = 10 \text{ B}, I_{K} = 0,1 \text{ мA}, \text{ не менее}$	75
Модуль коэффициента передачи тока на высокой	
частоте при U_{K9} =20 В, I_{K} =50 мА, f =100 МГц,	
не менее	2
не менее	6075*95* B
Напряжение насыщения коллектор — эмиттер:	
при I_{K} =150 мА, I_{B} =15 мА	0,15*0,3*0,4 B
при $I_{\rm K}$ =500 мA, $I_{\rm B}$ =50 мA, не более	1,6 B
Напряжение насышения база — эмиттер:	
при $I_K = 150$ мА, $I_B = 15$ мА	0,8*1*1,3 B
при $I_K = 500$ мА, $I_B = 50$ мА, не оолее	2,6 B
Время выключения при $I_{K}=150$ мА, $I_{B}=15$ мА,	
'не более	200 ис
Емкость коллекторного перехода при U_{KB} =10 В,	
не более	8 пФ
Обратный ток коллектора при $U_{\rm KB}{=}50$ В, не более:	
T = +25 и -45 °C	0,01 мкА
T=+85 °C	1 мкА
Обратный ток коллектор — эмиттер при U_{K3} =30 В,	
$U_{ {\it i} {\it i} $	50 н А
Обратный ток база — эмиттер при U_{35} =5 В, не более	10 мкА
•	
Предельные эксплуатационные данны	4e
Постоянное напряжение коллектор!— база	
Постоянное напряжение коллектор — эмиттер	60 B
Постоянное напряжение база — эмиттер	5 B
Постоянный ток коллектора	400 мА
Постоянная рассеиваемая мощность коллектора	0.C. D-
при $T = -45 + 25 ^{\circ}\text{C}$	
Температура <i>p-n</i> перехода	
Тепловое сопротивление переход — среда	
Томпорожира окружающой сроин	_45 L85°C

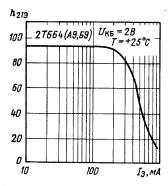
 $^{^{\}rm I}$ При $T{>}{+}25~^{\rm o}$ С постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{\rm K, \, Makc}, \, \, {\rm BT} = \frac{200 - T}{290} \, .$$

Температура окружающей среды . .


290 °C/Вт -45...+85 °C

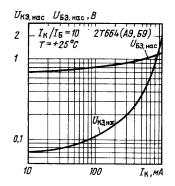
Зависимость статического коэффициента передачи тока от тока коллектора


2Т664А9, 2Т664Б9

Транзисторы кремниевые эпитаксиально-планарные структуры *p-n-p* универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с жесткими выводами. На корпусах транзисторов наносят условные знаки: 2T664A9—1A, 2T664B9—1B. Тип прибора указывается в этикетке. Масса транзистора не более 0,1 г.

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}2$ В, $I_{\rm 3}{=}0.15$ А	40250
Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{\rm K6}{=}5$ В, $I_{\rm 3}{=}50$ мА, типовое значение	
Схеме ОЭ при $U_{KB}=3$ В, $I_3=30$ мА, типовос значение Граничное напряжение при $I_3=30$ мА, не менее:	110
2T664A9	80 B
2Т664Б9	60 B
Напряжение насыщения коллектор — эмиттер при	0 2 B
$I_{\rm K} = 0.15$ А, $I_{\rm B} = 15$ мА, не более	0,5 Б
Напряжение насыщения база — эмиттер при $I_{\rm K}=$ = 0,15 A, $I_{\rm B}=$ 15 мA, не более	1,1 B
Время включения при U_{K3} =20 В, I_{K} =0,2 А, I_{B} =	,
=40 мA не более	0,1 мкс

В ремя выключения при $U_{\rm K9}{=}20$ В, $I_{\rm K}{=}0.2$ А, $I_{\rm B}{=}40$ мА, не более	0,7 мкс 0,3 мкс 25 пФ 150 пФ 10 мкА 10 мкА
Предельные эксплуатационные данны	ie
Постоянное напряжение коллектор — база: 2Т664A9	
при R_{69} =∞: 2T664A9	80 B 60 B
Постоянное напряжение эмиттер — база	1 A



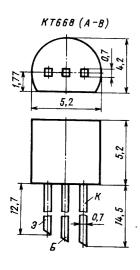
с теплоотводом

без теплоотвода . . . Температура p-n перехода .

Температура окружающей среды .

Зависимости статического коэффициента передачи тока от тока эмиттера

1 Вт


0,3 Вт

+150°C

 $-60 \,^{\circ}\text{C...}T_{\kappa} = +100 \,^{\circ}\text{C}$

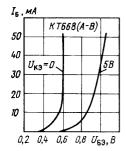
Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора

KT668A, KT668B, KT668B

Транзисторы кремниевые эпитаксиально-планарные структуры *p-n-p* усилительные. Предназначены для применения в усилителях, генераторах, переключающих устройствах. Выпускаются в пластмассовом корпусе с гибкими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 0,3 г.

Электрические параметры

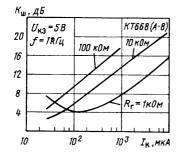
Коэффициент шума на частоте $f=1$ к Γ ц при $U_{\rm K3}=5$ В, $I_{\rm K}=0.2$ мА. $R_{\rm r}=2$ кОм	1,4*2,7*10 дБ
KT668A	75 140
КТ668Б	
KT668B	220473
при $T = +125$ °С	0,8 <i>n</i> _{21Э, мнн}
	2,5h219, Make
при T = -60 °C, не менее	0,3h _{21Э. мин}
Модуль коэффициента передачи тока на высокой	·
частоте при U_{KB} =5 В, I_{3} =10 мА, f =100 МГц.	22,7*3*
Напряжение насыщения коллектор — эмиттер:	,
. при $I_{\rm K}=10$ мА, $I_{\rm B}=0.5$ мА	0.08* 0.17* 0.3 B
при $I_{K} = 100$ мА, $I_{B} = 5$ мА	0.15* 0.25*
npa 18—100 mm, 18—0 mm	0,65* B
Environment to a service and the service and t	
Емкость коллекторного перехода при $U_{KB} = 10 \text{ B}$	1*4,5*7 ΠΦ
Обратный ток коллектора при $U_{\rm KB} = 30$ В, не более:	
T=+25 °C ·	15 нА
$T = +125 ^{\circ}\text{C}$	4000 нА
Обратный ток эмиттера при U_{35} =5 В, не более	100 нА
1 1 3D = ,	•

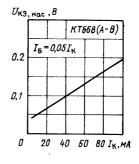

Предельные эксплуатационные данные

Постоянное на	пряже	ни	е к	олл	іек	тор) —	- ნ	аза					50	В
Постоянное на	жедп	ени	1e	KO	лле	KT	оp		эмі	IT T	еp	пр	И		
$R_{69} = \infty, I_{K} = 2$	мÅ.										•			45	В

Постоянное н	напря	ажение	е баз	за —	- Э М	ит	тер				5 B
Постоянный	ток	коллен	стор	a .							100 мА
Импульсный	TOK	колле	ктор	a .							200 мА
Постоянный											50 мА
17								 	 	1	
Постоянная											
при $T = -60$											500 мВт
)+:	25 °C							·		
при $T = -60$)+: p-n	25°C перехс	 да.		:		:	:	:		+150 °C

 $^{^1}$ При $T>+25\,^{\circ}$ С постоянная рассеиваемая мощность коллектора определяется из выражения

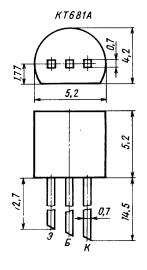

$$P_{K, \text{ Make}}, \text{ MBT} = \frac{150 - T}{0.25}.$$



10 10² 10³ 10⁴ I_K, MKA

Зависимости тока базы от напряжения база — эмиттер

Зависимость статического коэффициента передачи тока от тока коллектора



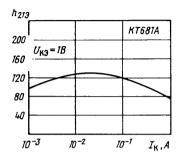
Зависимости коэффициента шума от тока коллектора

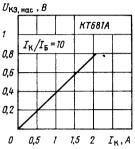
Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

KT681A

Транзистор кремниевый эпитаксиально-планарный структуры *p-n-p* усилительный. Предназначен для применения в усилителях низкой частоты. Выпускается в пластмассовом корпусе с гибкими выводами. На корпуснаносится условная маркировка— черный квадрат и буква «А». Тип прибора указывается в этикетке. Масса транзистора не более 0,3 г.

Электрические параметры

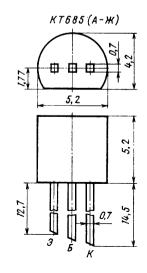

Статический коэффициент передачи тока в схеме ОЭ:	
при $U_{K9} = 1$ В, $I_{K} = 500$ мА:	
$T = +25 ^{\circ}\text{C}$	85100*300
$T = +85 ^{\circ}\text{C}$	85600
T+-45 °C	40300
при $U_{K\Theta} = 1$ В, $I_{K} = 1$ А	6080
при $U_{K9} = 10$ В, $I_{K} = 5$ мА, не менее	50
типовое значение	
при $U_{K9} = 5$ В, $I_{K} = 50$ мА, не менее	80
Модуль коэффициента передачи тока на высокой	
частоте при $U_{K9} = 5$ В, $I_{K} = 50$ мА, $f = 100$ МГц,	
не менее	1,2
типовое значение	1,5*
Напряжение насыщения коллектор — эмиттер:	
при $I_{K}=1$ A, $I_{B}=0,1$ A	0,27*0,4*0,5 B
при I _K =0,1 A, I _B =0,01 A	0,03*0,05*0,2 B
Напряжение насыщения база — эмиттер при I_{κ} —	
$=1 \text{ A}, I_{\rm B}=0.1 \text{ A} \dots$	0,9*0,95*1,2 B
Обратный ток коллектора при $U_{\rm KB}$ =25 В, не более:	
T = +25 и -45 °C	10 мкА
$T = +85 ^{\circ}\text{C}$	500 мкА
Обратный ток эмиттера при $U_{\mathrm{BB}}{=}5~\mathrm{B}$, не более	10 мк А
_	


Предельные эксплуатационные данные

постоянное напряжение коллектор — база	
Постоянное напряжение коллектор — эмиттер	25 B
Постоянное напряжение база — эмиттер	5 B
Постоянный ток коллектора	0,6 A
Импульсный ток коллектора при $t_{\rm u} = 20$ мс, $Q = 100$	2 A
Постоянный ток базы	0.1 A
Импульсный ток базы при $t_{\rm H}{=}20$ мс, $Q{=}100$	0,2 A

Постоянная рассеиваемая мощность	коллектора	
при <i>T</i> ≤+25 °С		0,35 Вт
Tемпература p - n перехода		+125 °C
Тепловое сопротивление переход — сре	еда	286 °С/Вт
Температура окружающей среды		-45+85 °C

¹ При T>+25 °С $P_{K_{MAKC}}$ снижается линейно на 3,5 мВт/°С.

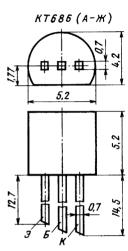


Зависимость статического коэффициента передачи тока от тока коллектора

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

КТ685A, КТ685Б, КТ685В, КТ685Г, КТ685Д, КТ685Е, КТ685Ж

Транзисторы кремниевые эпитаксиально-планарные структуры *р-п-р* универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с гибкими выводами. Тип прибора указывается в этикетке. Масса транзистора не более 0,3 г.


Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}10$ В, $I_{\rm 3}{=}150$ мА для КТ685 (А, Б, В, Г), $U_{\rm KB}{=}1$ В, $I_{\rm 3}{=}300$ мА для КТ685 (Е, Ж): при $T{=}{+}25{}^{\circ}{\rm C}$:	
При $I=+25$ С. KT685(A, Б, E) KT685(B, Γ , Ж) KT685 Ξ ,	40120 100300 70200 32300 12
КТ685 (A, Б, В, Г)	2 3,5 2,5
$I_{\rm K}$ =150 мA, $I_{\rm B}$ =15 мA, не более: КТ685(A, B, B, Г)	0,4 B 0,3 B
КТ685 (A, Б, В, Г)	1,3 B 1,1 B
не облее . Емкость коллекторного перехода при $U_{\rm KB}{=}10~{ m B},$	80 нс
не более. КТ685(A, Б, В, Г) . КТ685(Д, Е, Ж)	8 пФ 12 пФ 30 пФ
при $T=+25^{\circ}\mathrm{C};$ КТ685(A, B, Д, Е, Ж)	0,02 мкА 0,01 мкА
·	20 мкА 10 мкА
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база: KT685 (A, Б, В, Г)	60 B 30 B
КТ685 (A, B)	40 B 60 B 25 B 5 B 600 MA

Tемпература p - n перехода			+150°C
Тепловое сопротивление переход — среда			0,208 °С/мВт
Температура окружающей среды			-60+125 °C

 $^{^{-1}}$ При T > +25 °C P_{K} макс снижается на 4,8 мВт/°С.

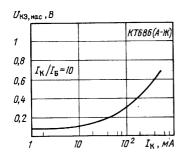
КТ686Д, КТ686Б, КТ686В, КТ686Г, КТ686Д, КТ686Е, КТ686Ж

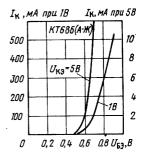
Транзисторы кремниевые эпитаксиально-планарные структуры р-п-р универсальные. Предназначены для применения в усилителях мощности. Выпускаются в пластмассовом корпусе с гибкими выводами. На корпус транзистора наносится только обозначение типономинала без индекса «КТ». Полностью тип прибора указывается в этикетке. Масса транзистора не более 0,3 г.

Электрические параметры

Статический коэффициент передачи тока в схеме ОЭ при:

npu:
$U_{KB}=1$ B, $I_{3}=100$ mA:
$T = +25 ^{\circ}\text{C}$:
КТ686А, КТ686Г, КТ686Ж 100170*25
КТ686Б, КТ686Д
KT686B, KT686E
$T = +125 ^{\circ}\text{C}$
$2.5h_{213}$ marc
I = -00 C, he weree
при $U_{KB}=1$ В, $I_9=300$ мА, $T=+25$ °C, не менее:
КТ686A , КТ686Г , КТ686Ж 60
КТ686Б, КТ686Д
KT686B, KT686E 170
при U_{KB} =1 В, I_3 =500 мА, T=+25 °C, не менее:
КТ686A , КТ686Б , КТ686В , КТ686Г , КТ686Е 20
КТ686Ж 40
Граничная частота коэффициента передачи тока в
схеме ОЭ прн U_{KB} =5 В, I_{9} =10 мА, не менее 100 МГц
типовое значение


Напряжение насыщения коллектор — эмиттер при $I_{\rm K} = 500$ мА, $I_{\rm B} = 50$ мА	0,2*0,3*0,7 B
КТ686A, КТ686Б, КТ686B, КТ686Г, КТ686Д, КТ686E КТ686Ж	6*8*12 пФ 30*40*50 пФ
Обратный ток коллектор — эмиттер при $U_{K3} = U_{K3}$ не более:	
$T = +25 ^{\circ}\text{C}$	0,1 мк А 10 мк А
Обратный ток эмиттера при $U_{\mathfrak{I}}=5$ В, не более	
Предельные эксплуатационные данни	чe
Постоянное напряжение коллектор — эмиттер: KT686A, KT686B, KT686B	25 В 5 В 800 мА
$T_{\kappa} = -60 + 25^{\circ}\text{C}$: с теплоотводом 1	+150°С 0,2°С/мВт 0,09°С/мВт


¹ При $T_{\rm K}\!\!>\!\!+25\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

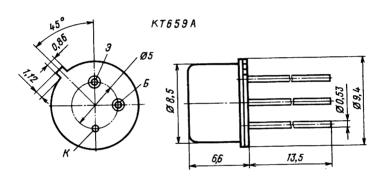
$$P_{K, \text{ Make}}, \text{ MBT} = \frac{150 - T_{K}}{0.09}.$$

 2 При T>+25 °C

$$P_{K \text{ Make}}, \text{ MBT} = \frac{150 - T}{0.2}.$$

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

Зависимости тока коллектора от напряжения база — эмиттер

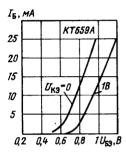

Раздел четвертый

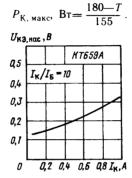
Транзисторы средней мощности сверхвысокочастотные

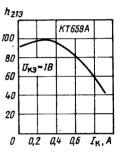
Транзисторы п-р-п

KT659A

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* переключательный. Предназначен для применения в высокоскоростных переключающих устройствах. Выпускается в металлостеклянном корпусе с гибкими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 1,5 г.

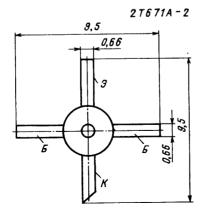


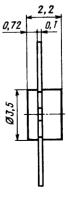

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K9}{=}1$ В, $I_{\rm K}{=}300$ мА, не менее	35 125
частоте при $U_{K9}=10$ В, $I_{K}=100$ мА, $f=100$ МГц,	_
не менее	3
Напряжение насыщения коллектор — эмиттер:	
при $I_{K}=1$ A, $I_{B}=0,1$ A, не более	0,9 B
типовое значение	0,36* B
при $I_{\rm K}$ =0,1 A, $I_{\rm B}$ =0,01 A, ие более	0,26 B
типовое значение	0,11* B
Время включения при $I_{K}=1$ A, $I_{B}=0,1$ A, не более	40 нс
типовое значение	11* нс
Время выключения при $I_{\rm K}{=}1$ A, $I_{\rm B}{=}0{,}1$ A, не более	80 нс
типовое значение	60* нс
Емкость коллекторного перехода при $U_{\rm KB} = 10$ В,	10 A
не более	10 пФ
типовое значение	от пФ


Предельные эксплуатационные данные

Постоянное напряжение коллектор — база	60 B
Постоянное напряжение коллектор — эмиттер	50 B
Постоянное напряжение база — эмиттер	6 B
Постоянный ток коллектора	1,2 A
Постоянная рассеиваемая мощность коллектора ¹	
при $T = -45 + 25$ °C	1 R _T
npn 1— 10+20 C	וטו
Температура <i>p-n</i> перехода	+180 °C

 $^{^1\,\}mbox{При }T\!>\!+25\,^{\circ}\mbox{С}$ постоянная рассеиваемая мощность коллектора определяется из выражения




Зависимости тока базы от напряжения база — эмиттер

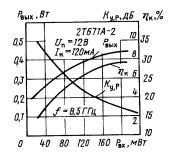
Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

Зависимость статического коэффициента передачи тока от тока коллектора

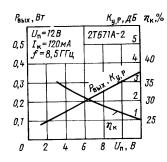
2T671A-2

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* генераторный. Предназначен для применения в усилителях мощности и генераторах в диапазоне частот 2...8,5 ГГц в схеме ОБ при напряжении питания 13 В в составе гибридных микросхем. Бескорпусные, в кристаллодержателе, с гибкими выводами. На корпус транзистора наносят условный знак — букву «Т» черной краской. Тип прибора указывается в этикетке. Масса транзистора не более 0,115 г.

Электрические параметры


•	
Выходная мощность на частоте f =8,5 ГГц при $U_{\rm n}$ =12 В, $I_{\rm K}$ =120 мА, $P_{\rm BX}$ =100 мВт	300350* 400* мВт
Коэффициент усиления по мощности на частоте $f=8,5$ ГГц при $U_{\rm n}=12$ В, $I_{\rm K}=120$ мА, $P_{\rm ex}=100$ мВт Коэффициент полезного действия на частоте	4,8*5,1*6* дБ
$f=8,5$ ГГц при $U_{\rm n}=12$ В, $I_{\rm K}=120$ мА, $P_{\rm BX}=100$ мВт, типовое значение	25* %
те в схеме ОБ при $f=1$ ГГи, $U_{\rm KB}=5$ В, $I_{\rm K}=100$ мА Емкость коллекторного перехода при $U_{\rm KB}=5$ В, ти-	5,7*5,8*13 град
повое значение	1,45* пФ
T = +25 и -60 °C	1 мА 5 мА
Обратный ток эмиттера при $U_{\rm ЭБ}{=}1,5$ В, не более: $T{=}+25$ и -60 °C	0,4 мА 5 мА
Предельные эксплуатационные данн	иe
Постоянное напряжение питания	15 B 1,5 B 0,15 A
Постоянная рассеивающая мощность коллектора	
Постоянная рассеивающая мощность коллектора при $U_{\rm K6}=8$ В, $T_{\rm k}=-60+63$ °C	0,15 A 0,9 Вт 1,3 Вт
Постоянная рассеивающая мощность коллектора при $U_{\rm Kb}=8$ В, $T_{\rm k}=-60+63^{\circ}{\rm C}$	0,15 A 0,9 BT 1,3 BT +190 °C

 $^{^1}$ При $T_{\rm K}{>}+63\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{K, \text{ Make}}, B_{T} = \frac{190 - T_{K}}{130}.$$

 2 При $T_{\rm k}\!\!>\!+50~^{\circ}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения

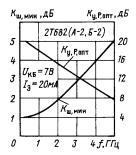
$$P_{\text{K, cp, Makc}}, \text{ BT} = \frac{190 - T_{\text{K}}}{100}.$$

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мошности

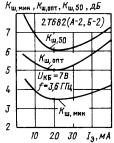
Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания

2Т682А-2, 2Т682Б-2

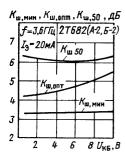
Транзисторы кремэпитаксиальнониевые планарные структуры n-p-n усилительные. Предназначены для применения в малошумящих усигерметизиролителях В ванной аппаратуре. Бескерамичекорпусные, В ском кристаллодержателе, с гибкими выводами. Маркируются цветным знаком базового выво-2T682A-2 да: цвета, 2Т682Б-2 - черного цвета. Тип прибора указывается в этикетке. Масса транзистора не более 0,3 г.


Электрические параметры

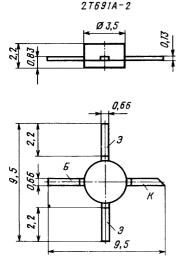
Оптимальный коэффициент усиления по мощности на частоте f =3,6 ГГц при $U_{\rm KB}$ =7 В, $I_{\rm 3}$ =20 мА 78, Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}$ =7 В, $I_{\rm 3}$ =20 мА, не менее: при T =+25 и +125 °C:	7*9,2* дБ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
2T682Б-2	
при <i>T</i> =-60 °C:	
три 7 = — 00 с. 2Т682A-2	
2T682B-2	
Границия пастота коэффициента перелачи тока в	
схеме ОЭ при $U_{\rm Kb} = 7$ В, $I_9 = 20$ мА	.4,7* ГГц
Обратный ток коллектора при $U_{\rm KB}{=}10$ В, не более:	
T = +25 M -60 °C	¢Α
$T = +125 ^{\circ}\text{C}$	1ĸA
Обратный ток эмиттера при $U_{25}=1$ В, не более:	
T = +25 µ -60 °C	1KA
$T - \pm 125 ^{\circ}C$ 200	мкА
Емкость коллекторного перехода при $U_{\rm KB} = 10 \; {\rm B}$. 0,7*	0,8*
0,3	יי ווש
Емкость эмиттерного перехода при $U_{\mathrm{ЭБ}}{=}0$ 4,3	*4,4*
4,9)* пФ
Предельные эксплуатационные данные	
Постоянное напряжение коллектор — база 10 1	3

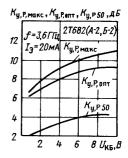

Постоянное напряжение коллектор — база	10 B
Постоянное напряжение эмиттер — база	I B
Постоянный ток коллектора	50 mA
Постоянная рассенваемая мощность коллектора' при	
$T = -60 + 60 ^{\circ}\text{C}$	330 мВт
Температура р-п перехода	+1/5°C
Тепловое сопротивление переход — кристаллодержа-	
тель	250 °C/Bt
Температура окружающей среды	60+125 °C

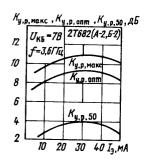
 $^{^{1}}$ При $T>+60\,^{\circ}$ С постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{\rm K, \, Makc}, \, \, {\rm Bt} = \frac{175 - T_{\rm K}}{250}.$$

Зависимости коэффициента шума и коэффициента усиления от частоты

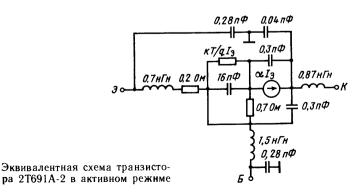


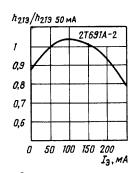

Зависимости коэффициента шума от тока эмиттера

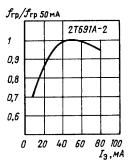

Зависимости коэффициента шума от напряжения коллектор — база

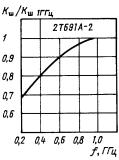
Зависимости коэффициента усиления от тока эмиттера

Зависимости коэффициента усиления от напряжения коллектор — база

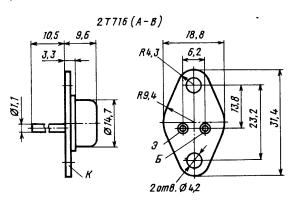

Транзисторы р-п-р


2T691A-2


Транзистор кремниевый планарный структуры р-п-р усилительный с нормированным коэффициентом шума на частоте 1 ГГц. Предназначен для применения СВЧ усилителях. Бескорпусный, в керамическом кристаллодержателе, с полосковыми выводами. На транзистор наносят черной краской условный знак «+». Тип прибора указывается в этикетке. Масса транзистора не более 0,2 г.


Otteki bil i settine i napame i pa	
Коэффициент шума на частоте $f=1$ ГГц при $U_{\rm KB}=10$ В, $I_{\rm K}=5$ мА, не более	4* дБ
Коэффициент усиления по мощности на частоте $f=1$ $\Gamma\Gamma$ ц при $U_{KB}{=}10$ В, $I_{K}{=}50$ мА, не менее Γ раничная мощность на частоте $f=1$ $\Gamma\Gamma$ ц при	6,6* дБ
$U_{KB}=10 \text{ B}, I_{K}=50 \text{ mA}, \text{ He MeHee}$	23 мВт
Статический коэффициент передачи тока в схеме ОЭ	
при U_{KB} =10 B, I_3 =50 мA, не менее: T =+25 и +125 °C	20
$T=-60^{\circ}\text{C}$	10
Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{\rm KB}\!=\!10$ В, $I_{\rm 3}\!=\!50$ мА, не менее Емкость коллекторного перехода при $U_{\rm KB}\!=\!10$ В,	3 ГГц
. не более	3,5 пФ
Обратный ток коллектора при D_{KB} =40 В, не облес. $T = +25 \text{ и } -60 \text{ °C} \cdot \cdot$	1 мА
$T = +45 ^{\circ}\text{C}$	3 mA
$T = +125 ^{\circ} \mathrm{C}$	10 M11
•	
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база	40 B
$R_{\epsilon_0} = 100 \text{ Om}$	25 B
Постоянное напряжение эмиттер — база	3 B
Постоянный ток коллектора	0,2 A
Постоянная рассеиваемая мощность коллектора 1 : T_{κ} = $-60+25^{\circ}$ С	1,2 Вт
$T=\pm 195$ °C	U.25 BT
Температура <i>p-n</i> перехода	+150 °C $T =$
температура окружающей среды	$=+125 {}^{\circ}\text{C}$

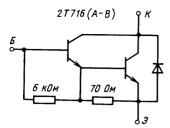
 $^{^{\}rm I}$ При $T_{\rm K}\!\!>\!\!+25\,^{\circ}{\rm C}$ $P_{\rm K,\ макс}$ уменьшается линейно.



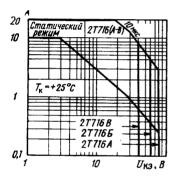
Зависимость статического коэффициента передачи тока от тока эмиттера Зависимость граничной частоты от тока эмиттера Зависимость коэффициента шума от частоты

Раздел пятый **Транзисторы мощные низкочастотные**

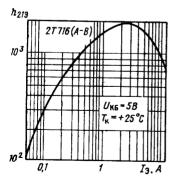
Транзисторы n-p-n **2T716A, 2T716B**, **2T716B**


Транзисторы кремниевые меза-планарные структуры n-p-n составные универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более $20~\rm r.$

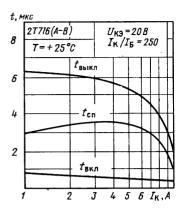
Электрические параметры

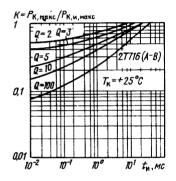

750 2

Граничное напряжение при I_9 =100 мA, не менее: 2T716A	80 B 60 B 40 B 2 B 3 B
2T716A	100 B
9T716F	80 B
2T716B	60 B
Пробивное напряжение оаза — эмиттер при 13—	5 B
Пробивное напряжение база — эмиттер при I_3 = 5 мA, не менее	
	2 мкс
Rneмя выключения при $U_{K3}=20$ В, $I_{K}=5$ А, $I_{B}=$	7 мкс
=0.02 А, не более	,
более	150 пФ
более . Емкость эмиттерного перехода при $U_{\rm 36}{=}0.5$ В, не	350 пФ
более	550 114
Предельные эксплуатационные данн Постоянное напряжение коллектор база:	
Постоянное напряжение коллектор база: 2T716A	100 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B
Постоянное напряжение коллектор база: 27716A	100 B 80 B 60 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B
Постоянное напряжение коллектор база: $27716A \dots \dots$	100 B 80 B 60 B 100 B 80 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A 0.2 A
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A 0.2 A
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A 0,2 A 0,3 A
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A 0,2 A 0,3 A
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A 0,2 A 0,3 A
Постоянное напряжение коллектор база: 2T716A	100 B 80 B 60 B 100 B 80 B 60 B 80 B 60 B 40 B 5 B 10 A 20 A 0,2 A 0,3 A 30 BT 2 BT +150 °C

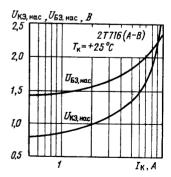


Принципиальная схема транзистора

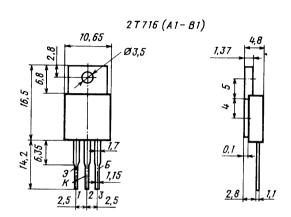

Зависимости времени включения, выключения и спада от тока коллектора



Области безопасной работы транзисторов



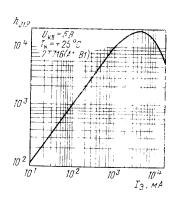
Зависимость статического коэффициента передачи тока от тока эмиттера

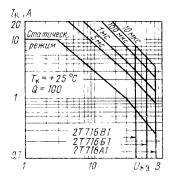

Зависимости коэффициента К от длительности импульса

Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора

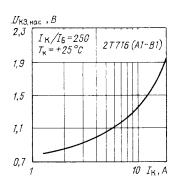
2T716A1, 2T716B1, 2T716B1

Транзисторы кремниевые меза-планарные структуры *n-p-n* составные универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 2,5 г.

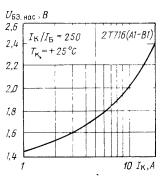

Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB} = 5$ В, $I_{9} = 5$ А:	
2T716A1	
2Т716Б1, 2Т716В1,	50
Модуль коэффициента передачи тока на высокой	
частоте при U_{K3} =5 В, I_{K} =0,5 А, f =1 МГц, не менее 3	
Граничное напряжение при $I_3 = 0,1$ A, не менее:	
2T716A1) B
2Т716Б1) B
2T716B1) B
Напряжение насыщения коллектор - эмиттер при	
	В
Напряжение насыщения база эмиттер при $I_{K} =$	
$=5$ A, $I_{\rm B}=0.02$ A, не более	В
.Пробивное напряжение коллектор — база при $I_{K} =$	
=1 мА. не менее:	
2T716A1	00 B
2Т716Б1) B
2T716B1) B
Пробивное напряжение база — эмиттер при I_9 =5 мA,	
не менее	В
Емкость коллекторного перехода при $U_{\rm KB}{=}5$ B,	
не более	Фп 0
Емкость эмиттерного перехода при $U_{\rm ЭБ} = 0.5$ В,	
не более	50 пФ


Предельные эксплуатационные данные

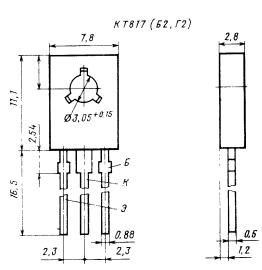
Постоянное напряжение коллектор база:	
2T716A1	100 B
2Т716Б1	80 B
2T716B1	60 B
Постоянное напряжение коллектор эмиттер:	
при $R_{0}=1$ кОм:	
2 <u>T</u> 716A1	100 B
2Т716Б1	80 B
2T716B1	60 B
$\operatorname{HPH} R_{\tilde{n}_{\pi}} = \infty :$	
2T716A1	80 B
2Т716Б1	60 B
2T716B1	40 B
Постоянное напряжение база - эмигтер	5 B
Постоянный ток коллектора	10 A
Импульеный ток коллектора при $t_{\rm u} = 5~{\rm Mc}$	20 A
Постоянный ток базы	0.2 A
Импульсный ток базы при $t_a = 5$ ме	0,4 A
Импульсный ток базы при $t_{\rm a} \! \! = \! \! 5$ мс Постоянная рассенваемая мощность коллектора .	
при $T_b = -60 . +25 ^{\circ}\mathrm{C}$:	
с тенлоотводом	30 B _T
без теплоотвода	l Br
Темнература <i>р-п</i> нерехода	+ 150 C
Температура окружающей среды	60 C $T_{c} =$
	$=+100^{\circ}$ C


 $^{^{-1}}$ При $T_{\rm K}\!\!>\!\!+25\,^{\circ}{\rm C}\,P_{\rm K,\, Make}$ енижается линейно на 0,24 Br $^{\circ}{\rm C}$ с теплотводом и на 8 мВт $^{\circ}{\rm C}$ без течлоотводе

-Области безопаснов работы гранзистора



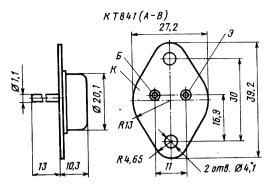
Зависимость статического коэф фициента передачи тока от тока эмиттера


Зависимость напряжения насыщения коллектор эмиттер от тока коллектора

Зависимость влиряжения насыщения база эмигтер от тока коллектора

KT81762, KT817Г2

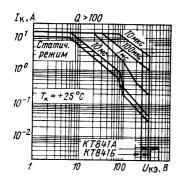
Транзисторы кремниевые эпитаксиально-иланарные структуры n-p-n усилительные. Предназначены для применения в усилителях низкой частоты, операционных и лифференциальных усилителях, преобразователях и импульеных устроиствах. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 0.7 г.



Электрические параметры	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}$ =5 В, $I_{\rm 3}$ =50 мА для КТ817Б2, $I_{\rm 3}$ =15 мА для КТ817Г2, не менее	100 3 ΜΓ _Ц 45 B 90 B 0,12 B 1,5 B
типовое значение	60* пФ
Емкость эмиттерного перехода при $U_{\rm 9B}{=}0.5$ В, типовое значение	115* пФ
Предельные эксплуатационные данны	яe
Постоянное напряжение коллектор база: КТ817Б2	45 B 100 B
при R_{69} =1 кОм: КТ817Б2	100 B
KT81762	
КТ817Г2	5 B
$T_{\rm k} = -40 + 25$ °C:	

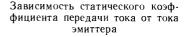
 $^{^1}$ При $T_{\rm K}+25~{\rm ^{\circ}C}~P_{\rm K,~макc}$ уменьшается линейно на 0,2 Вт/°С с теплоотводом и на 0,1 Вт/°С без теплоотвода.

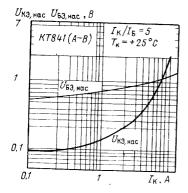
KT841A, KT841B, KT841B


Транзисторы кремниевые планарные структуры n-p-n переключательные. Предназначены для применения в переключающих устройствах, импульсных модуляторах, мощных преобразователях, линейных стабилизаторах напряжения. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

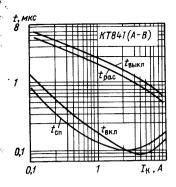
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB} = 5$ В, $I_{9} = 5$ А, не менее	12
типовое значение	20*
Граничная частота коэффициента передачи тока в	
Траничная частога коэффициента передачи тока в	10 МГц
схеме ОЭ при $U_{KB} = 10$ В, $I_{3} = 0.2$ А, не менее	TO THE
Граничное напряжение при $I_{\rm K} = 0,1$ A, не менее:	350 B
KT841A, KT841B	
КТ841Б	250 B
Напряжение насыщения коллектор — эмиттер при	
<i>I</i> _K =5 A, <i>I</i> _B =1 A, не более	1,5 B
типовое значение	0,6* B
Время включения при U_{K9} =200 В, I_{K} =5 А, I_{B} =1 А	-,-
Brews Brindena upa o K3-200 pt 1K-0 11, 1P-1 11	0.08* мкс
для КТ841А, КТ841Б, типовое значение	0,00 mrc
Время спада при U_{K3} =200 В, I_{K} =5 А, I_{B} =1 А	0.5
для КТ841А, КТ841Б, не более	0,5 мкс
для КТ841A, КТ841B, не более	
I _Б =1 А для КТ841А, КТ841Б, не более.	1 мкс
типовое значение	0,8* мкс
типовое значение	
	300 пФ
не более	220* п Ф
типовое значение	220 HQ
Емкость эмиттерного перехода при $U_{\rm ЭБ}{=}1$ В, не	E000 A
бо лее	5000 nΦ
типовое значение	3800* пФ
Обратный ток коллектора при $U_{\rm KB} = U_{\rm KB, макс},$	
не более	3 мА
Обратный ток эмиттера при $U_{\rm ЭБ}{=}5$ В, не более	10 mA
Oopathain tok smuttepa liph 036—0 b, he oonee.	10 M12
The second secon	
Предельные эксплуатационные данн	DIC .
Постоянное напряжение коллектор — база:	
KT841A, KT841B	600 B
KT841B	400 B
	100 B
Постоянное напряжение коллектор — эмиттер:	
при <i>U</i> ЭБ≪1,5 В:	
KT841A, KT841B	600 B
КТ841Б	400 B
	.00 D
при $R_{69} = \infty$:	250 B
KT841A, KT841B	350 B
КТ841Б	250 B

Импульсное напряжение коллектор — эмиттер при $R_{6s} \lesssim 100$ Ом:	
KT84!A, KT84IB	500 B
КТ841Б	350 B
Постоянное напряжение база — эмиттер	5 B
Постоянный ток коллектора	
Импульсный ток коллектора при $t_{\rm H}\!=\!10$ мс	15 A
Постоянный ток базы	2 A
Импульсный ток базы при $t_{\rm H} = 10$ мс	4 A
Постоянная рассеиваемая мощность коллектора при	
$T_{K} \leqslant +25 ^{\circ}C$:	
с теплоотводом ¹	50 Вт
с теплоотводом ¹	3 В т
Температура p - n перехода	+150 °C
Температура окружающей среды	$-45 ^{\circ}\text{C} T_{\kappa} =$
	=+100 °C

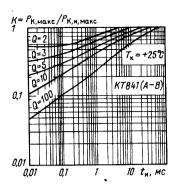

 $^{^{1}}$ При $T_{\rm K}\!>\!+25\,^{\circ}{\rm C}$ $P_{\rm K,\,Makc}$ снижается линейно до 20 Вт при $T_{\rm K}\!=\!+100\,^{\circ}{\rm C}.$ 2 При $T\!>\!+25\,^{\circ}{\rm C}$ $P_{\rm K,\,Makc}$ снижается линейно до 1,2 Вт при $T\!=\!+100\,^{\circ}{\rm C}.$



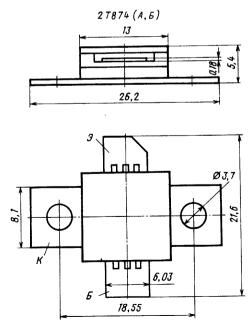
h₂₇₃
40
K7841(A-B)
UKE = 5B
T_K=+25°C


20
10
0,01
Q1
1 I₃, A

Области безопасной работы транзисторов



Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора


Зависимости времени включения, выключения и спада от тока коллектора

Зависимости коэффициента К от длительности импульса

2T874A, 2T8745

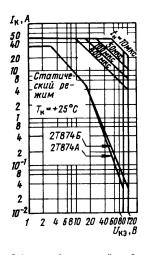
Транзисторы кремниевые эпитаксиально-планарные структуры *n-p-n* переключательные. Предназначены для применения в источниках вторичного электропитания. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 7 г.

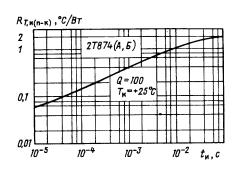
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K3} = 5$ В, $t_{\rm H} = 100$ мкс, $Q = 200$, не менее: при $T_{\rm K} = +25^{\circ}{\rm C}$, $I_{\rm K} = 30$ А: $2{\rm T874A}$	15
21874Б	10
2Т874A	8 5
Граничное напряжение при $I_{\rm K}$ =0,1 A, L =25 мГн: 2T874A	100110*115* B 120130*140* B
Напряжение насыщения коллектор — эмиттер при $I_{\rm K}$ =30 A, $I_{\rm B}$ =5 A, $t_{\rm H}$ =100 мкс, Q =200, не более	1 B 0,7* B
$=30 \text{ A}, I_{\rm B}=5 \text{ A}, t_{\rm H}=100 \text{ мкс}, Q=200 \dots$ Время спада при $U_{\rm K3}=30 \text{ B}, I_{\rm K}=30 \text{ A}, I_{\rm B}=5 \text{ A} \dots$	1,2*1,3*1,5* В 0,05*0,15* 0,2 мкс
Время рассасывания при $U_{\rm K9}{=}30$ В, $I_{\rm K}{=}30$ А, $I_{\rm B}{=}5$ А, не более	0,5 мкс
$T_{\rm K}\!=\!+25^{\circ}{\rm C}$	3 mA 5 mA 10 mA
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база Постоянное напряжение коллектор — эмиттер при $U_{3\rm B}\!=\!-1,\!5$ В или $R_{\rm B}\!=\!10$ Ом:	150 B
2T874A	100 B
2Т874Б	120 B
$t_{\Phi} = 0,5$ мкс	150 B 5 B
=20 MKC, $Q=10$	7 B
Постоянный ток коллектора	30 A 50 A
The state of the contract of the state of th	9 A

8 A 15 A

75 Вт +175°C

. 2°C/Вт . -60°С...Т_к=

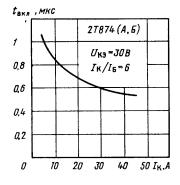

 $=+125 \, ^{\circ}\text{C}$


Постоянная рассеиваемая мощность коллектора при $T_{\kappa} = -60... + 25 \, ^{\circ} \text{C}$

Температура окружающей среды

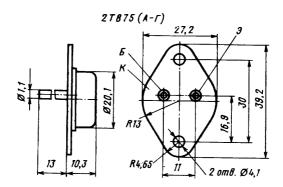
$$P_{\rm K, \, Makc}, \, \, {\rm Bt} = \frac{175 - T_{\rm K}}{2}.$$

 $^{^{\}rm I}$ При $T_{\rm k}{>}+25\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения



Область безопасной работы транзисторов

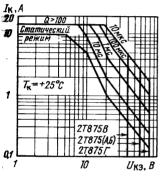
Зависимость импульсного теплового сопротивления переход — корпус от длительности импульса $R_{T, \text{ и(n-k)}}(Q) = (2 - R_{T, \text{ и(n-k)}}(100))/Q +$


$$R_{T, H(\Pi-K)}(Q) = (2 - R_{T, H(\Pi-K)}(100))/Q + R_{T, H(\Pi-K)}(100)$$

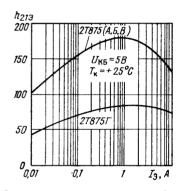
Зависимость времени включения от тока коллектора

2T875A, 2T875B, 2T875B, 2T875F

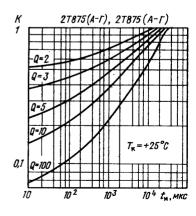
Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n переключательные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.



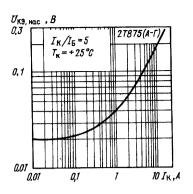
Статический коэффициент передачи тока в схеме ОЭ

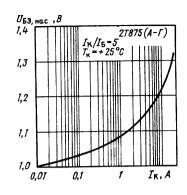

при $U_{KB} = 5$ В, $I_{9} = 5$ А:	
2 <u>т</u> 875A, 2т875Б, 2т875В	80250
2Τ875Γ	40160
Граничная частота коэффициента передачи тока в	
cxeme O9 find $U_{KO} = 10 \text{ B}$ $I_{V} = 0.5 \text{ A}$	20120 МГц
схеме ОЭ при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}0.5$ А	20120 1.11 ц
2T875B, 2T875B	60 B
2T875B	40 B
2T875B	80 B
Напряжение насыщения коллектор — эмиттер при	00 B
$I_{n}=5$ Δ $I_{n}=1$ Δ He force	0.5 B
$I_{\rm K}{=}5$ A, $I_{\rm B}{=}1$ A, не более	0,0 D
$-5 \text{ A} I_{\text{m}} - 1 \text{ A}$ we homee	1.5 B
=5 A, $I_{\rm B}$ =1 A, не более	1,0 D
типовое значение	0,12* мкс
типовое значение	0,12 MKC
-0.5 А типовое значение	0,4* мкс
=0,5 А, типовое значение	0,4 MKC
типовое значение	0,05* мкс
типовое значение	0,03 MKC
типорое значение	910* пФ
типовое значение	это пф
повое значине	5500* пФ
повое значение	3300 пФ
по болое	3 мА
не более	3 мА 10 мА
Ооратный ток эмиттера при $O_{B9}=5$ В, не облее	10 MA
Π	
Предельные эксплуатационные даины	ыe
Постоянное напряжение коллектор – база:	
2T875A, 2T875Γ	90 B
2Т875Б	
2T875B	
Постоянное напряжение коллектор эмиттер:	
при $R_{69} = 100$ Ом:	
2T875A, 2T875Γ	90 B
278756	70 B
2T875B	50 B
#1010D	00 D

_												
при R_{6}	∞;											
2T875	A, 27	`875Б										60 B
2T875	В.											40 B
2T875	Γ.											80 B
Постоянное на	пряже	ение ба	іза -	9N	итт	ep						5 B
Постоянный то	ок кол	ілектор	oa .									10 A
Импульсный то	ок кол	ілектор	оа пр	ои t_1	₄ ==	10	мс					15 A
Постоянный т												
Импульсный т	ок ба:	зы при	$t_{\rm H} =$	- 10	МC							5 A
Постоянная р	ассеи	ваемая	A Mo	ншс	ост	Ь	KO.	пле	KTO	opa	1	
при $T_{\kappa} = -60$												
с теплоот	водом											50 Bτ
без тепло	оотвод	ца .										3 Вт
Температура р	-n nep	ехода										+150 °C
Температура (экруж	ающей	і сре	еды								$-60 ^{\circ} \mathrm{C} T_{\mathrm{K}} =$
	- •		•									=+125 °C


 $^{^{\}rm I}$ При $T_{\rm K}{>}+25\,^{\rm o}{\rm C}$ $P_{\rm K,\ макс}$ уменьшается линейно на $0.4\,$ Вт/°C с теплоотводом и на $20\,$ мВт/°C без теплоотвода.

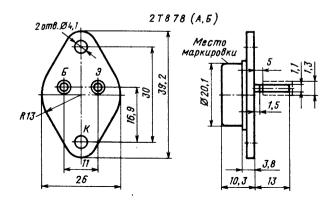
Области безопасной работы транзисторов


Зависимости статического коэффициента передачи тока от тока эмиттера


Зависимости коэффициента от длительности импульса

K

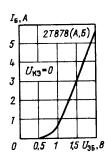
3 В. М. Петухов

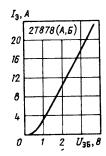

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

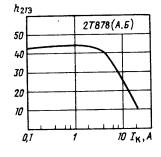
Зависимость напряжения насыщения база — эмиттер от тока коллектора

2T878A, 2T8785

Транзисторы кремниевые эпитаксиально-планариые структуры n-p-n переключательные. Предназначены для применения в переключающих устройствах, импульсных модуляторах, в источниках вторичного электропитания. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 17 г.

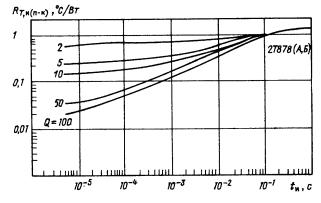

электрические параметры	
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{\rm K9} = 5$ В, $I_{\rm K} = 10$ А: , $T_{\rm K} = +25^{\circ}{\rm C}$	1215*50 550
Граничная частота коэффициента передачи тока в суеме ОЭ при $U_{VO} = 10 \text{ B}$, $I_{V} = 1 \text{ A}$.	1022*33* MΓų
Граничное напряжение при $I_{\rm K}{=}0,1$ А, $L{=}40$ мГн: 2Т878А	400460*570* B 300 B
Напряжение насыщения коллектор — эмиттер при I_{K} =15 A, I_{B} =3 A	0,35*0,42*
Напряжение насыщения база — эмиттер при I_{K} = = 15 A, I_{E} = 3 A.	1,5 B 1,05*1,15*2 B
=15 A, $I_{\rm B}$ =3 A	30 B
Время включения при $U_{K9}=300$ В, $I_{K}=10$ А, $I_{B}=2$ А	0,17*0,23* 0,4 мкс
Время рассасывания при $U_{\rm K9}{=}300$ В, $I_{\rm K}{=}10$ А,	0.04 1.04 0.5
$I_{\rm B}{=}2~{\rm A}$	0,8*1,2*2,5 мкс 0,15*0,2* 0,5 мкс
Емкость коллекторного перехода при $U_{\mathrm{KB}} \! = \! 10~\mathrm{B}$	215*300* 500 пФ
Емкость эмиттерного перехода при $U_{\mathrm{ЭБ}}{=}2~\mathrm{B}$	5000*6200* 10 000 пФ
Обратный ток коллектора, не более: при $T_{\kappa} \! = \! +25^{\circ}\mathrm{C};$	
2Т878А при $U_{\rm KB}\!=\!800~{\rm B}$	3 мА 3 мА
$2 ilde{T}878A$ при $U_{KB} = 700 \; \mathrm{B}$	10 мА 10 мА
при $T = -60$ °C: 2T878A при $U_{KB} = 700$ В	
Обратный ток эмиттера при $U_{\Im B}$ =6 В, не болсе	40 mA
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор- — эмиттер при	
$R_{69} = 10 \text{ OM}:$	800 B
2Т878А	600 B
$R_{c} = 10 \text{ Om } t. > 15 \text{ MKC}$	
2T878A	600 B
2Т878А 2Т878Б	6 B
Постоянный ток коллектора	25 A
Импульсный ток коллектора	3∪ A 6 A
Импульсный ток базы	7 Â

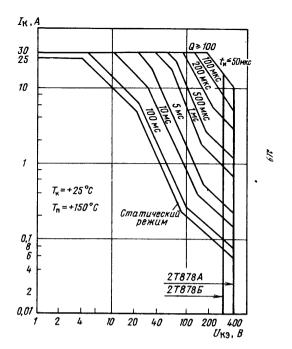

Постоянная рассеиваемая мощность коллектора:	
с теплоотводом ² при $T_{\rm K} \le +25{\rm ^{\circ}C}, U_{\rm K9} = 20{\rm B}$	100 Br
без теплоотвода ³ при $T \leqslant +85$ °C	2 Вт
Температура <i>p-n</i> перехода	+150 °C
Температура окружающей среды	$-60 ^{\circ}CT. =$
Температура окружающей среды	$= +125 {}^{\circ}\text{C}$


 $T_{\rm K}$ при изменении $T_{\rm K}$ от +75 до +125 °C и от -20 до -60 °C $U_{\rm K}$ $_{\rm R}$ $_{\rm Makc}$ снижается до 700 В для 2Т878А до 500 В для 2Т878Б. 2 При $T_{\rm K}$ >+25 °C постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ Makc}}, \text{ BT} = \frac{150 - T_{K}}{1,25}.$$

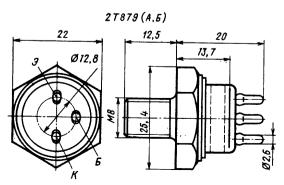
 3 При изменении T от +85 до $+125\,^{\circ}\mathrm{C}$ $P_{\mathrm{K,\; макс}}$ снижается линейно до 0,8 Вт.

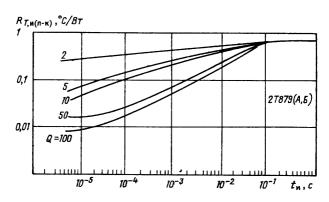



Зависимость тока базы от напряжения база — эмиттер

Зависимость тока эмиттера от напряжения база — эмиттер

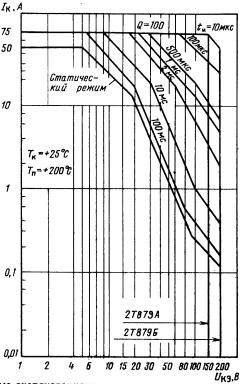
Зависимость статического коэффициента переда чи тока от тока коллектора


Зависимости импульсного теплового сопротивления переход — корпус от длительности импульса


Области безопасной работы транзисторов

2Т879А, 2Т879Б

Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n переключательные. Предназначены для применения в мощных переключающих устройствах. Выпускаются в металлокерамическом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 28 г.

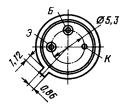


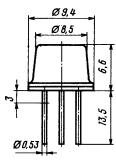
при $T_{\rm K} = +25^{\circ}{\rm C}$: 27879A	Статический коэффициент передачи тока в схеме ОЭ	
2Т879А 2Т879Б 15 при $T_{\rm K}=+125^{\circ}{\rm C}$ 10 при $T_{\rm E}=-60^{\circ}{\rm C}$: 2Т879А 10 2T879Б 77 Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{\rm K9}=10$ В, $I_{\rm K}=1$ А, не менее 10 МГц граничное напряжение при $I_{\rm K}=0,2$ А, $L=25$ мГн, не менее 20 А, $I_{\rm B}=2$ А, не более: 2Т879А 2Т879Б 2 В Напряжение насыщения коллектор эмиттер при $I_{\rm K}=20$ А, $I_{\rm B}=2$ А, не более 2 В Напряжение насыщения база — эмиттер при $I_{\rm K}=20$ А, $I_{\rm B}=2$ А, не более 1,2 В Энергия вторичного пробоя при $U_{\rm S}=-2$ В, $R_{\rm G_3}=50$ Ом, $L=10$ мГн, не менее 100 мДж Время включения при $U_{\rm K9}=100$ В, $I_{\rm K}=20$ А, $I_{\rm B}=2$ А, не более 1,2 мкс Время рассасывания при $U_{\rm K9}=100$ В, $I_{\rm K}=20$ А, $I_{\rm B}=2$ А, не более 1,2 мкс Емкость коллекторного перехода при $U_{\rm K5}=10$ В, не более 0,25 мкс Емкость эмиттерного перехода при $U_{\rm K5}=20$ В, не более 10 000 пФ	при $U_{K9} = 4$ В, $I_{K} = 20$ А, не менее:	
2Т879Б	при $I_{\rm K} = +25$ °C:	20
при $T_{\rm K}=+125^{\circ}{\rm C}$	o Momo P	
при $T=-60^{\circ}\text{C}$: 27879A	218/9Б	
27879A $27879B$ 7 7 7 7 7 7 7 7 7 7	при $T_{\kappa} = +125$ °C	10
ТРВОВ ТОВ ТОВ В В В В В В В В В В В В В В		10
Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{\rm K3} = 10$ В, $I_{\rm K} = 1$ А, не менее		7
схеме ОЭ при $U_{K\ni}=10$ В, $I_K=1$ А, не менее. 10 М1 ц Граничное напряжение при $I_K=0.2$ А, $L=25$ мГн, не менее		
не менее	evene O \ni may $U_{VO} = 10 \text{ B}$ $I_{V} = 1 \text{ A}$ He we here	10 ΜΓμ
не менее	Example Hampswelle HDM $I_V = 0.2$ A $I_v = 25$ MCH.	
Напряжение насыщения коллектор — эмиттер при $I_{\rm K}{=}20~{\rm A}$, $I_{\rm B}{=}2~{\rm A}$, не более: 2 T879A	по менее	200 B
$I_{\rm K}\!=\!20$ А, $I_{\rm B}\!=\!2$ А, не более: 21879А	Напряжение насышения коллектор — эмиттер при	
2Т879А 1,2 В 2Т879Б 2 В Напряжение насыщения база — эмиттер при $I_{\rm K}=$ = =20 A, $I_{\rm B}=2$ A, не более 1,8 В нергия вторичного пробоя при $U_{\rm 3B}=-2$ В, $R_{\rm 69}=50$ Ом, $L=10$ мГн, не менее 100 мДж Время включения при $U_{\rm K9}=100$ В, $I_{\rm K}=20$ А, $I_{\rm B}=2$ А, не более 1,2 мкс Время рассасывания при $U_{\rm K9}=100$ В, $I_{\rm K}=20$ А, $I_{\rm B}=2$ А, не более 1,2 мкс Время спада при $U_{\rm K9}=100$ В, $I_{\rm K}=20$ А, не более 1,2 мкс Емкость коллекторного перехода при $U_{\rm K9}=10$ В, не более 0,25 мкс Обратный ток коллектора при $U_{\rm K9}=20$ В, не более 10 000 пФ Обратный ток коллектора при $U_{\rm K9}=20$ В, не более 3 мА	$I_{-}=20$ V $I_{-}=2$ V he goldes.	
2 ТВ79Б		1.2 B
Напряжение насыщения база — эмиттер при $I_{\rm K}=$ = 20 A, $I_{\rm B}=2$ A, не более		
= 20 A, $I_{\rm B}$ =2 A, не более		- 2
Энергия вторичного пробоя при $U_{3\mathrm{B}}\!=\!-2$ В. $R_{6_3}\!=\!50\mathrm{Om}$, $L\!=\!10\mathrm{mF}$ н, не менее	— 20 A / ₂ = 2 A не более	1.8 B
$R_{69}=50~{\rm OM}, L=10~{\rm MT}$ н, не менее	$\frac{1}{2}$ $\frac{1}$	-,
Время включения при $U_{\rm K9}{=}100$ В, $I_{\rm K}{=}20$ А, $I_{\rm B}{=}2$ А, не более	$\mathbf{p}_{i} = 50 \text{Om} I = 10 \text{MT}_{i}$ He weller	100 мДж
$I_{\rm B}{=}2$ А, не более	Rhough By Househad TDM $II_{Vo} = 100$ B $I_{V} = 20$ A	
Время рассасывания при $U_{\rm K3}{=}100$ В, $I_{\rm K}{=}20$ А, $I_{\rm B}{=}2$ А, не более	L=9 Å us fores	0.35 MKC
$I_{\rm B}{=}2$ А, не более	Rooms paccacheaung and Uve=100 B Uv=20 A	0,00
более		1,2 мкс
более	Время спада при $U_{V2}=100$ В. $I_{V}=20$ А. $I_{E}=2$ А. не	
Емкость коллекторного перехода при $U_{\rm KB}{=}10~{\rm B}$, не более	более	0,25 мкс
не более 800 пФ Емкость эмиттерного перехода при U_{36} =2 В, не более 10 000 пФ Обратный ток коллектора при U_{K6} =200 В, не более: $T=+25^{\circ}\mathrm{C}$ 3 мА		,
Емкость эмиттерного перехода при U_{35} = 2 В, не более 10 000 пФ Обратный ток коллектора при U_{K5} = 200 В, не более: $T = +25 ^{\circ}$ С 3 мА		800 пФ
Обратный ток коллектора при $U_{\rm KB}{=}200$ В, не более: $T=+25{}^{\circ}{\rm C}$	Емиость эмиттерного перемоде при $U_{\rm or}=2$ В не более	
$T_{\rm o}=+25^{\circ}{\rm C}$	Обратный ток коллектора при $U_{Wr} = 200 \text{ В не более}$:	
1 _K -720 0		3 мА
$T - \pm 125 \text{ M} = 60 \text{ °C}$	$T_{\rm K} = +125$ и -60 °C	10 мА
$V_{\rm K} = +120$ й $= -00$ С	Обратный ток эмиттера при Иод = 6 В. не более	

Зависимости импульсного теплового сопротивления переход — корпус от длительности импульса

Области безопасной работы транзисторов

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база	200 B
110стоянное напряжение коллектор — эмиттер при	
$R_{69}{=}10~{ m OM}$	200 B
импульсное напряжение коллектор — эмиттер' при	
K60=1U UM. L=1 MKC	200 D
постоянное напряжение эмиттер — база	6 B
постоянный ток коллектора	50 A
импульсный ток коллектора	75 A
постоянный ток оазы	20 A
импульсный ток базы	30 A
постоянная рассеиваемая мошность коллектора	
при $U_{K3} = 20$ В, $T_{K} = +25$ °C	250 Вт
температура <i>p-n</i> перехода	+200 °C
Температура окружающей среды	$-60 ^{\circ}\text{C} T_{\kappa} =$
	$=\pm 125 {}^{\circ}\text{C}$

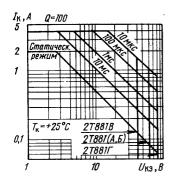

 $t_{\Phi} = 0.5$ мкс. $U_{\text{KЭ}\,R,\,\text{и, макс}}$ снижается линейно до 150 В при $t_{\Phi} = 0.5$ мкс. 2 При $T_{\text{K}} > +25$ °C постоянная рассеиваемая мощность коллектора определяется из выражения

 $P_{K, \text{ Make}}, B_{T} = \frac{200 - T_{K}}{0.7}$

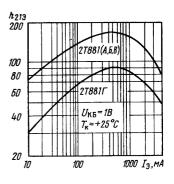
2T881A, 2T881B, 2T881B, 2T881F

2T881 (A-F)

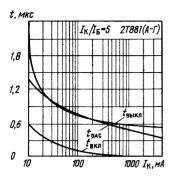
Транзисторы кремниевые эпитаксиально-планарные структуры *п-р-п* универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с гибкими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.

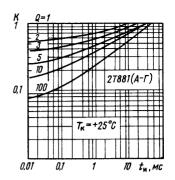

Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB}=1$ B, $I_{9}=1$ A:	
2T881A, 2T881B, 2T881B	80250
2Τ881Γ	40160
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{KB} = 5 \text{ B}, I_{3} = 0.05 \text{ A}$	30300 МГц
Граничное напряжение при $I_3 = 0.03$ A, не менее:	
2Т881А, 2Т881Б	60 B
2T881B	40 B
2Т881Г	80 B
Напряжение насыщения коллектор — эмиттер при	
$I_{\rm K} = 1$ A, $I_{\rm B} = 0.2$ A, не более	0,35 B
Напряжение насыщения база — эмиттер при $I_{K}=1$ A,	
I _Б =0.2 A, не более	1,3 B
Время включения при U_{K9} =20 В, I_{K} =1 А, I_{B} =0,2 А,	
типовое значение	0,08* мкс
Время выключения при $U_{K\ni}$ =20 В, I_{K} =1 А, I_{B} =0,2 А,	
типовое значение	0,6* мкс
Время рассасывания при $U_{K\ni}=20$ В, $I_{K}=1$ А,	
$I_{\rm B} = 0.2$ A, типовое значение	0,5* мкс
Емкость коллекторного перехода при $U_{KB} = 5$ В, типо-	
вое значение	200* пФ
Емкость эмиттерного перехода при $U_{\Im B}{=}4$ В, типо-	
вое значение	900* пФ

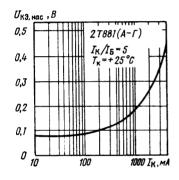
Обратный	ток	коллектора	при	$U_{KB} = U_{KB, \text{ Make}}$	
не более .				КБ— СКБ, макс,	0,2 мА
Обратный	TOK	коллектор —	эмитте	ер при $U_{K \ni R} = 1$	
$=\dot{U}_{K\ni R}$ Mai	$_{\rm kc}$, $R_{\rm f}$	_з =1 кОм, не б	более .		0,5 мА
Обратный	ток з	миттера при	$U_{26} =$:4,5 В, не более	1 mA

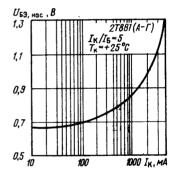

Предельные эксплуатационные данные

Постоянное напряжение коллектор — база:	
2T881A, 2T881F	100 B
27881Б	80 B
2T881B	50 B
Z1001D	00 B
Постоянное напряжение коллектор — эмиттер:	
при $R_{69} = 1$ кОм:	100. D
2Т881А, 2Т881Г	100 D
2T881B	80 B
2T881B	50 B
при R ₆₉ =∞:	
2Т881А, 2Т881Б	60 B
2T881B	40 B
2Τ881Γ	80 B
Постоянное напряжение база — эмиттер	4,5 B
Постоянный ток коллектора	2 A
Импульсный ток коллектора при $t_{\rm H} = 10~{\rm Mc}$	4 A
Постоянный ток базы	1 A
Импульсный ток базы при $t = 10$ мс	1.5 A
Импульсный ток базы при $t_{ m H}\!=\!10$ мс	.,0
при $T_{\rm k} = -60 + 25$ °C:	
с теплоотводом	5 Br
бор топпоотводом	0.8 Br
без теплоотвода	1.150°C
Температура p - n перехода	T100 C
гемпература окружающей среды	00 CI _K =
	=+125 °C

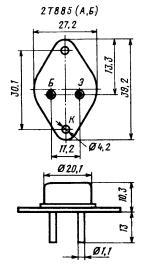

 $^{^1}$ При изменении $T_{\rm K}$ от +25 до $+125\,^{\circ}{\rm C}$ $P_{
m K,\ Make}$ снижается линейно на $0.04~{\rm BT/^{\circ}C}$ с теплоотводом и на $6.4~{\rm MBT/^{\circ}C}$ без теплоотвода.


Области **б**езопасной работы транзисторов


Зависимости статического коэффициента передачи тока от тока эмиттера


Зависимости времени включения, выключения и рассасывания от тока коллектора

Зависимости коэффициента К от длительности импульса


Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

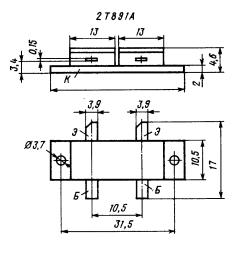
Зависимость напряжения насыщения база — эмиттер от тока коллектора

2Т885А, 2Т885Б

Транзисторы кремниевые эпитаксиально-планарные структуры *n-p-n* переключательные. Предназначены для применения в источниках вторичного электропитания. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

Статический коэффициент передачи тока в схеме ОЭ	
при $U_{K9}=5$ В, $I_{K}=20$ А, $t_{H}=100$ мкс, $Q=200$.	
не менее:	
$T_{\kappa} = +25 {}^{\circ}\text{G}$	12
$T_{\rm K} = +125 \text{ H} - 60 ^{\circ}\text{C} \cdot \cdot$	8
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{K9}=5$ В, $I_{K}=0.5$ А.	1520*25 [*] МГц
Граничное напряжение при $I_{\rm K}$ =0,1 A, L =29 мГн:	400 450* 500* D
2T885A	400450*500* B
2Т885Б	500550*600* B
Напряжение насыщения коллектор — эмиттер при	1,2*2*2,5 B
$I_{\rm K} = 30 \text{ A}, I_{\rm B} = 6 \text{ A}, t_{\rm H} = 100 \text{ MKC}, Q = 200 \dots$	1,222,0 D
Напряжение насышения база — эмиттер при $I_{\rm K}=$ = 30 A, $I_{\rm B}=6$ A, $t_{\rm B}=100$ мкс, $Q=200$, не более	3,5 B
Время включения при U_{K9} =200 В, I_{K} =30 А,	0,0 D
$I_{\rm K}/I_{\rm B}=5$	0,1*0,15*
1K/1P=0	0,5* мкс
Время рассасывания при $U_{K9} = 200$ В, $I_{K} = 30$ А,	,
$I_{\rm E1} = 6$ Å, $I_{\rm E2} = 9$ Å, не более.	2 мкс
Время спада при U_{K9} =200 В, I_{K} =30 А, I_{B1} =6 А,	
$I_{\text{E2}} = 9 \text{ A} \cdot \dots \cdot $	0,25*0,35*
DL .	0,5 mkc
Емкость коллекторного перехода при $U_{\rm KB}$ = 100 B	100*150*
· ·	200* пФ
Емкость эмиттерного перехода при $U_{{ m 35}}{=}5~{ m B}$	3500*3800*
	4500* пФ
Обратный ток коллектора при $U_{\rm KB} = 500$ В, не более:	
$T_{\kappa} = +25 ^{\circ}\text{C}$	1 мА 2 мА
$T_{\kappa} = +125 \text{ и } -60 \text{ °C} \dots \dots \dots \dots \dots$	2 мА 50 мА
Обратный ток эмиттера при $U_{26} = 5$ В, не более	OU MA

Предельные эксплуатационные данные


Импульсное напряжение коллектор — база	800 B
Постоянное напряжение коллектор — эмиттер при	
$U_{\rm ЭБ} = -1.5$ В или $R_{\rm 69} = 10$ Ом:	
2T885A	
2Т885Б	500 B
Импульсное напряжение коллектор — эмиттер при	
$U_{\rm 3B} = -1.5$ В или $R_{\rm 69} = 10$ Ом, $t_{\rm H} = 20$ мкс, $Q = 2$,	
$t_{ m d}\!\!\gg\!\!0,\!5$ мкс	
Постоянное напряжение база — эмиттер	
Постоянный ток коллектора	40 A
Импульсный ток коллектора при $t_{\rm H} = 20$ мкс, $Q = 10$	60 A
Постоянный ток базы	
Импульсный ток базы при $t_{\rm H}{=}20$ мкс, $Q{=}10$	20 A
Постоянная рассеиваемая мощность коллектора	
при $T_{\kappa} = -60 + 25 ^{\circ}\text{C}$	
Температура p - n перехода	+150 °C
Тепловое сопротивление переход — корпус	0,84 °C/Βτ
Температура окружающей среды	
	=+125 °C

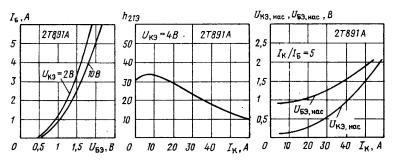
 $^{^{\}rm I}$ При $T_{\rm K}{>}+25\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора, определяется из выражения

$$P_{K, \text{ Make}}, \text{ BT} = \frac{150 - T_{K}}{0.84}.$$

2T891A

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* переключательный. Предназнамен для применения в источниках вторичного электропитания. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 12 г.

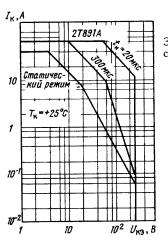
Sheki pareckae napame i pia	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K9}{=}4$ В, $I_{\rm K}{=}5$ А, $t_{\rm H}{=}100$ мкс, $Q{=}200$:	
$T_{\nu} = +25 ^{\circ}\text{C}$.	
$T_{\kappa} = +125 ^{\circ}\text{C}$, не менее	
Граничная частота коэффициента передачи тока в	O .
схеме ОЭ при $U_{K3} = 5$ В, $I_{K} = 0.5$ А	12*17*20* ΜΓμ
Граничное напряжение при $I_{\rm K}$ =0,1 A, L =29 мГн	250280*310* B
Напряжение насыщения коллектор — эмиттер при	0.45* 0.75* 1.0D
$I_{\rm K}$ =40 A, $I_{\rm B}$ =8 A, $I_{\rm H}$ =100 MKC, Q =200	0,45*0,75*1,2 B
Напряжение насыщения база — эмиттер при $I_{\rm K}=$ = 40 A, $I_{\rm B}=8$ A, $I_{\rm H}=100$ мкс, $Q=200$.	1,2*1,5*2 B
Время включения при $U_{K9}=100$ В, $I_{K}=40$ А,	0.05*0,15*
$I_{K}/I_{B}=5$	0,050,15
Время рассасывания при $U_{K9} = 100$ В, $I_{K} = 40$ А,	-,-
$I_{\rm B1}{=}4$ A, $I_{\rm B2}{=}8$ A	0,4*0,6*1 мкс
Время спада при $U_{K9}=100$ В, $I_{K}=40$ А, $I_{B1}=4$ А, $I_{B2}=8$ А	0,05*0,12*
162—011	0,2 мкс
Обратный ток коллектора при $U_{\rm KB}{=}250~{ m B}$, не более:	
$T_{\rm K} = +25^{\circ}{\rm C}$	2 mA
$T_{\rm K} = +125$ и -60 °C	5 мА 50 мА
Обратный ток эмиттера при $U_{\rm E3}{=}7~{ m B}$, не более	300*350*
EMROCIE ROMMERTOPHOTO REPEXODA IIPII O KB100 B	400 пФ
Емкость эмиттерного перехода при $\mathit{U}_{\mathrm{B}9}{=}5~\mathrm{B}$	5000*5800* 6500 пФ


з за за объем Предельные эксплуатационные данные

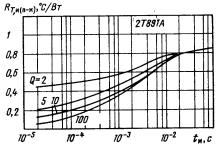
Импульсное напряжение коллектор — база при $t_{\rm H}$	•
=20 MKC, $Q=2$	350 B
Постоянное напряжение коллектор — эмиттер при	
$U_{\rm B3} = -1.5$ В или $R_{\rm 69} = 10$ Ом	250 B
Импульсное напряжение коллектор — эмиттер при	
$U_{\rm b9} = -1.5$ В или $R_{\rm 69} = 1.0$ Ом, $t_{\rm H} \leqslant 20$ мкс,	050 D
$t_{\phi} \geqslant 0.5$ MKC, $Q=2$	350 B
Постоянное напряжение база - эмиттер	7 B
Постоянный ток коллектора	40 A
Импульсный ток коллектора при $t_{\rm H} = 20$ мкс, $Q = 10$	60 A
Постоянный ток базы	10 A
Импульсный ток базы при $t_{\rm H}$ =20 мкс, Q =10.	20 A
The manual passage and Manual Control of	-0
Постоянная рассеиваемая мощность коллектора	150 D-
при $T_{\kappa} = -60 + 25 ^{\circ}\text{C}$	150 BT
Температура <i>p-n</i> перехода	+150 °C
Тепловое сопротивление переход — корпус	0,833 °C/Bτ
Температура окружающей среды	$-60 ^{\circ}\text{C} T_{r} =$
samuel and beautiful and a second and a second	$=+125 {}^{\circ}\text{C}$

 $^{$^{-1}\,\}Pi$ ри $T_{\rm K}\!>\!+25\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ make}}, \text{ BT} = \frac{150 - T_{\text{K}}}{0.833}.$$

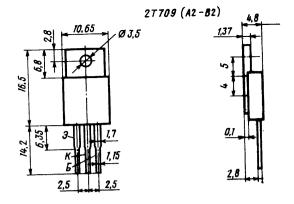

Расстояние от корпуса до места лужения и пайки выводов 2 мм, температура припоя ± 235 °C, время пайки не более 3 с.

Зависимости тока базы от напряжения база — эмиттер


Зависимость статического коэффициента передачи тока от тока коллектора

Зависимости напряжений насыщения коллектор эмиттер и база — эмиттер от тока коллектора

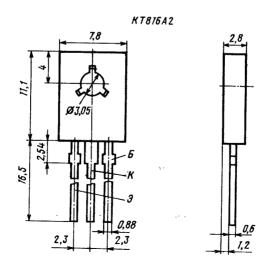
Области безопасной работы транзистора


Зависимости импульсного теплового сопротивления переход — корпус от длительности импульса

Транзисторы р-п-р

2T709A2, 2T709B2, 2T709B2

Транзисторы кремниевые меза-планарные структуры *p-п-р* составные усилительные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 2,5 г.

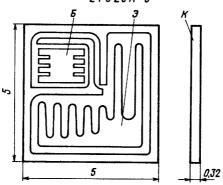

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}$ =5 B, $I_{\rm 3}$ =5 A, не менее: 2T709A2	500 750
частоте при $U_{K9}=5$ В, $I_{K}=0,5$ А, $I=1$ М1Ц,	3
не менее	80 B 60 B 40 B
Напряжение насыщения коллектор — эмиттер при $I_{\rm K}=5$ A, $I_{\rm B}=0.02$ A, не более	2 B
$I_{\rm B}{=}0.02$ A, не более . Пробивное напряжение коллектор — база при $I_{\rm K}{=}$	3 B
= 1 мА, не менее: 2T709A2	100 B 80 B 60 B
Пробивное напряжение база — эмиттер при 13 = 5 мА, не менее	5 B
тробивное наприжение обас $^{-1}$ мА, не менее	250 пФ
Емкость эмиттерного перехода при U_{36} =0,8 В. не более	1000 пФ
Предельные эксплуатационные данн	ые
21709Б2 21709Б2 21709В2 Постоянное напряжение коллектор — эмиттер:	100 B 80 B 60 B
при $R_{69} = 1$ кОм: 2T709A2	80 B

при $R_{69} = 0$	o:									
2T709 <i>E</i>	12									80 B
217091	02									60 B
217091	32									40 B
Постоянное наг	іряженне	: база–	-эмит	тер						5 B
Постоянный то	ок колло	ектора								10 A
Импульсный тов	к коллект	ора при	$t_u = 3$	5 мс						20 A
Постоянный то	к базы .									0.2 A
Импульсный тон Постоянная ра	к базы пр	и $t_{\rm H} = 5$	MC.							0,4 A
Постоянная ра	ссеиваем	ая мо	ощнос	ТЬ	KO.	лле	KT	ора	t 1	
при $T_{\kappa} = -60$										
с теплоотво	одом									30 B _T
без теплоот	вода									1 B _T
Температура <i>р-и</i>	и переход	(a								+150 °C
Температура ок	ружаюш	ей сре	ды .							$-60 ^{\circ}\text{C} T_{\kappa} =$
										$=+100 ^{\circ}$ C

 $^{^1}$ При изменении $T_{\rm K}$ от +25 до $+100\,^{\circ}{\rm C}$ $P_{\rm K,~макс}$ снижается линейно на 0,24 Bт/°C с теплоотводом и на 8 мВт/°C без теплоотвода.

KT816A2

Транзистор кремниевый эпитаксиально-меза-планарный структуры p-n-p усилительный. Предназначен для применения в усилителях низкой частоты, операционных и дифференциальных усилителях, преобразователях и импульсных устройствах. Выпускается в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 1 г.



электрические нараметры	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K3}{=}1$ В, $I_{\rm K}{=}0.03$ А, не менее	200 3 ΜΓ _{II} 25 B 0,6 B 0,33* B 1,5 B 0,92* B 5 B 60* πΦ 115* πΦ 100 мкА
Предельные эксплуатационные данни	яe
• **	
Предельные эксплуатационные дання Постоянное напряжение коллектор — база Постоянное напряжение коллектор — эмиттер:	
Постоянное напряжение коллектор — база	40 B
Постоянное напряжение коллектор — база	40 B 40 B 25 B
Постоянное напряжение коллектор — база	40 B 40 B 25 B
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A 6 A 1 A
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A 6 A 1 A
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A 6 A 1 A 25 Bt · +150 °C
Постоянное напряжение коллектор — база	40 B 40 B 25 B 5 B 3 A 6 A 1 A 25 Bt · +150 °C

 $T_{\rm K} = +100\,{\rm ^{\circ}C}$. $P_{\rm K,\; Makc}$ снижается линейно до 10 Вт при $T_{\rm K} = +100\,{\rm ^{\circ}C}$.

2T825A-5

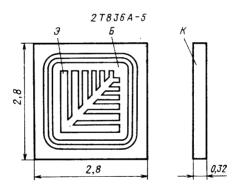
Транзистор кремниевый меза-планарный структуры *p-n-p* составной. Предназначен для применения в усилителях и переключающих устройствах. Бескорпусный, на пластине, кристаллы неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0,025 г.

500...18 000 400...25 000

T=-60 °C	10018 000
Модуль коэффициента передачи тока на высокой	10010 000
частоте при $U_{K2}=3$ В. $I_{K}=10$ А. $f=1$ МГи, не менее	4
Граничное напряжение при $I_9 = 100$ мА, $t_{\rm H} = 300$ мкс,	
Q=100, не менее	80 B
Напряжение насыщения коллектор — эмиттер при	
$I_{\rm K} = 10$ A, $I_{\rm B} = 0.04$ A, не более	2 B
Напряжение насыщения база — эмиттер при I_{K} —	
=10 A. I _Б =0,04 A, не более	3 B
Пробивное напряжение коллектор — эмиттер, не ме-	
Hee:	100 B
$T = +25$ °С при $U_{36} = 1,5$ В, $I_{K} = 1$ мА	100 B
$T = +125$ °С при $U_{36} = 1.5$ В, $I_{K} = 5$ мА	80 B
Пробивное напряжение эмиттер — база при $I_3 = -2$ мА на менее	5 B
=2 мА, не менее	
Время выключения при $I_{K} = 10 \text{ A}$, $I_{B} = 40 \text{ мA}$, не более	1 мкс 4,5 мкс
Емкость коллекторного перехода при U_{KB} =10 В,	4,5 MKC
не более	600 пФ
Емкость эмиттерного перехода при $U_{25}=3$ В, не бо-	000 ΠΦ
лее	600 пФ
	000 n.g
Предельные эксплуатационные данны	иe
Постоянное напряжение коллектор — эмиттер при	
$U_{95}=1.5 \text{ B}, R_{69}=1 \text{ KOM}, T=-60+55 °C.$	100 B
Постоянное напряжение эмиттер — база	5 B
Постоянный ток коллектора	20 A
Импульсный ток коллектора	40 A
Постоянный ток базы	0,5 A
Постоянная рассеиваемая мощность коллектора:	
при температуре подложки —60+25 °C (с теп-	
лоотводом) 2	125 Вт
82	

+25°C (в условной микросхеме без теплоотвода) ³	3 Вт
$+25^{\circ}\mathrm{C}$ (кристалл без теплоотвода) 4	+175 °C
$^{-1}$ При $T > +55^{\circ}$ С $U_{K9X \text{ маке}}$ снижается лине	йно до 80 В при

¹ При $T>+55\,^{\circ}$ С $U_{\text{KЭХ, макс}}$ снижается линейно до 80 В при $T=+125\,^{\circ}$ С.


² При $T_{\text{K}}>+25\,^{\circ}$ С $P_{\text{K, макс}}$ снижается на 0,83 Вт/ $^{\circ}$ С.

 3 При $T>+25\,^{\circ}\mathrm{C}$ $P_{\mathrm{K,\, макc}}$ снижается на 0,02 Bt/°C. 4 При $T>+25\,^{\circ}\mathrm{C}$ $P_{\mathrm{K,\, макc}}$ снижается на 0,26 мВт/°С.

при температуре окружающей среды —60...

2T836A-5

Транзистор кремниевый планарный структуры *p-n-p* переключательный. Предназначен для применения в переключающих устройствах, усилителях мощности, источниках вторичного электропитания. Бескорпусный, на пластине, кристаллы неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0,0058 г.

Статическии коэффициент передачи тока в схеме ОЭ	
при $U_{KB} = 3$ В, $I_{9} = 2$ А:	
$T = +25 ^{\circ}\text{C}$	2050*100*
T=+125 °C, не менее	20
T = -60 °C, не менее	10
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{K9} = 5$ В, $I_{K} = 0.05$ А	4*30*40* ΜΓμ
Граничное напряжение при $I_3 = 100$ мА	80100*125* B
Напряжение насыщения коллектор — эмиттер при	
$I_{K}=2 \text{ A}, I_{B}=0,2 \text{ A} \dots$	

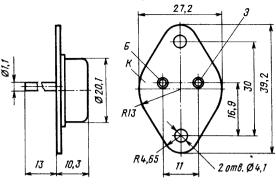
Напряжение насыщения база — эмиттер при $I_{\rm K}{=}2$ A, $I_{\rm B}{=}0.2$ A	0,95*1*1,3 В 0,25*0,4* 0,6 мкс
Время выключения при $U_{\rm K3}\!=\!85~{\rm B},~I_{\rm K}\!=\!2~{\rm A},~I_{\rm B}\!=\!80~{\rm MA}$ Время рассасывания при $U_{\rm K3}\!=\!85~{\rm B},~I_{\rm K}\!=\!2~{\rm A},~I_{\rm B}\!=\!80~{\rm MA}$	0,31*1*1,6 мкс 0,2*0,6*1 мкс 0,1*0,4*0,6 мкс 340*350* 370* пФ
EMNOCIS 3MNITEPHOTO ПЕРЕХОДА ПРИ 035—0,0 В	2500* пФ
Обратный ток коллектора при $U_{\rm KB}{=}90$ В, не более: $T{=}+25^{\circ}{\rm C}$	100 мк А 1000 мк А 1 м А
Предельные эксплуатационные даннь	ıe.
	я е 90 В
Постоянное напряжение коллектор — база Постоянное напряжение коллектор — эмиттер при $R_{69} = 100$ Ом	90 B 90 B 5 B
Постоянное напряжение коллектор — база Постоянное напряжение коллектор — эмиттер при $R_{09} = 100$ Ом	90 B 90 B 5 B 3 A 4 A
Постоянное напряжение коллектор — база Постоянное напряжение коллектор — эмиттер при $R_{69} = 100$ Ом	90 B 90 B 5 B 3 A 4 A
Постоянное напряжение коллектор — база	90 B 90 B 5 B 3 A 4 A
Постоянное напряжение коллектор — база	90 B 90 B 5 B 3 A 4 A 1 A

Температура *p-n* перехода

Температура окружающей среды

KT842A, KT8425

+150 °C


-60...+125 °C

Транзисторы кремниевые эпитаксиально-планарные структуры *p-n-p* переключательные. Предназначены для применения в мощных преобразователях, линейных стабилизаторах напряжения. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

 $^{^{1}}$ При $T_{\rm K} > +25\,^{\circ}{\rm C}$ $P_{\rm K, \, Makc}$ снижается на 0,04 Bt/°C.

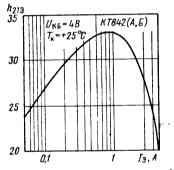
 $^{^2}$ При $T>+25\,^{\circ}$ С $P_{\text{K, макс}}$ снижается на 5,5 мВт/ $^{\circ}$ С. 3 При $T>+25\,^{\circ}$ С $P_{\text{K, макс}}$ снижается на 0,2 мВт/ $^{\circ}$ С.

KT842 (A, 5)

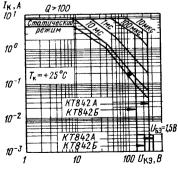
Электрические параметры

Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB}=4$ В, $I_{3}=5$ А, не менее	15
типовое значение	20
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{K9} = 10$ В, $I_{K} = 0.2$ А, не менее	10 МГц
Граничное напряжение при I _K =50 мА:	050 D
KT842A	250 B
КТ842 Б	150 B
Напряжение насыщения коллектор — эмиттер при	1 0 D
I_{K} =5 A, I_{B} =1 A, не более	1,8 B
типовое, вначение	0,5* B
Напряжение насыщения база — эмиттер при $I_{\rm K}$ =5 A,	10 D
/ _Б =1 A, не более	1,8 B
типовое зиачение	1,1* B
	0,12* мкс
типовое значение	0,12 MKC
Время спада при U_{K9} =20 В, I_{K} =2 А, I_{B} =0,5 А,	0.13* мкс
типовое значение	0,15 MKC
время рассасывания при $U_{K9}=20$ в, $I_K=2$ A,	0,8* мкс
$I_{\rm B}{=}0,5$ A, типовое значение	U,O MKC
	250* пФ
типовое значение	200 114
не более	1 мА
Обратный ток эмиттера при $U_{35} = 3$ В, не более	5 mA
Ooparhiin tok smirtepa npir 036-5 b, he dowee	O MA
Предельные эксплуатационные данны	₄ e

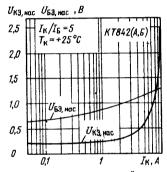
Постоянное	напр	яж	ени	ie	кол	леі	кто	р –	– б	аза	a:			
KT842A								٠.						300 B
														200 B
Постоянное	напр	яж	ени	ıе	кол	ле	кто	p –	- э	МИ	гте	p:		
при <i>R</i> бэ	=10	Ом	ι:		•									
·KŤ	842 A													300 B

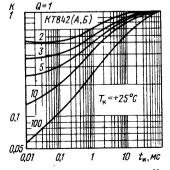

КТ842Б

est n

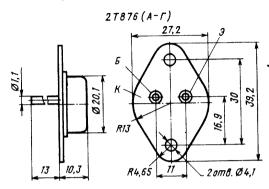

200 B

при $R_{6} = \infty$:	
KT842A	250 B
КТ842Б	150 B
K1042D	5 B
Постоянное напряжение база — эмиттер	5 1
Постоянный ток коллектора	5 A
Импульсный ток коллектора при $t_{\rm H} = 10~{\rm Mc}$	8 A
Постоянный ток базы	1 A
Импульсный ток базы при $t_u = 10$ мс	2 A
Постоянная рассеиваемая мощность коллектора при	
$T = 45 + 25 ^{\circ}C$	# 0 P
с теплоотводом	50 Β τ
с теплоотводом	3 Вт
Томиоратира в в переуола	+100 C
Температура окружающей среды	$-45 ^{\circ}CT =$
Температура окружающей среды	=+100 C


При $T_{\rm K}\!>\!+25\,^{\circ}{\rm C}$ $P_{\rm K.\, макс}$ уменьшается линейно до 20 Вт при $T_{\rm K}\!=\!+100\,^{\circ}{\rm C}.$ При $T_{\rm C}\!+\!25\,^{\circ}{\rm C}$ $P_{\rm K.\, макс}$ уменьшается линейно до 1,2 Вт при $T_{\rm C}\!+\!100\,^{\circ}{\rm C}.$


Зависимость статического коэффициента передачи тока от тока эмиттера

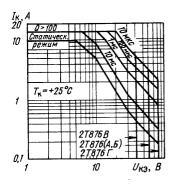
Области безопасной работы транзисторов


Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора

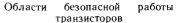
Зависимости коэффициента К от длительности импульса

2Т876А, 2Т876Б, 2Т876В, 2Т876Г

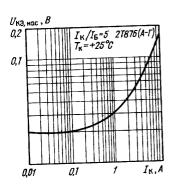
Транзисторы кремниевые эпитаксиально-планарные структуры p-n-p переключательные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более $20\,$ г.

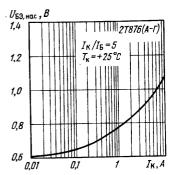


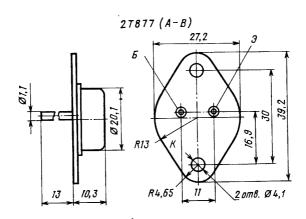
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{\rm MR} = 5$ B, $I_{\rm R} = 5$ A:	00 050
2Т876А, 2Т876Б, 2Т876В	80250
9Т876Г	40160
Граничная частота коэффициента передачи тока в	
- 1 - 00 1 - 10 B /v=00 A	20120* МГц
Граничное напряжение при $I_K = 50$ мм, не менее.	00 D
2Т876А, 2Т876Б	60 B
2T876B	40 B
9Τ876Γ	80 B
Напряжение насыщения коллектор — эмиттер при	
1 E 1 I — 1 1 ио болое	0,5 B
$I_K = 5 \text{ A}, I_B = 1 \text{ A},$ не объес	
I. — I А не более	1,5 B
Время включения при U_{K9} =30 В, I_{K} =5 А, I_{B} =0,5 А,	
не более	0,25 мкс
типовое значение	0,12 мкс
Время выключения при U_{K9} =30 В, I_{K} =5 А, I_{B} =	
=0,5 А, не более	1 м кс
	0,4* мкс
типовое значение	-,
не более	0,2 мкс
типовое значение	0,05* мкс
Емкость коллекторного перехода при U_{KB} =10 В,	,-
типовое значение	910* пФ
Емкость эмиттерного перехода при $U_{\rm ЭБ}$ =0,5 В,	
типовое значение	5500*π Φ
Of partitify TOK KOTTEKTODA TIDE UKE WAYA.	-
	3 мА
Обратици ток эмиттера при $U_{25} = 5$ В. не более	10 мА
Обратный ток коллектора при $U_{\rm K}=U_{\rm K}$	


Предельные эксплуатационные данные


Постоянное напряжение коллектор база:
2T876A, 2T876Γ 90 B
2Т876Б 70 В
2T876B
Постоянное напряжение коллектор — эмиттер:
при R _{бэ} =100 Ом:
2Ť876A, 2T876Γ 90 B
2Т876Б 70 В
2T876B 50 B
при R_{69} =∞:
2Т876А, 2Т876Б 60 В
2T876B
2T876Γ 80 B
Постоянное напряжение база — эмиттер 5 В
Постоянный ток коллектора
Импульсный ток коллектора при $t_{\rm H} = 10$ мс 15 А
Постоящий ток комисктора при $t_{\rm H} = 10$ мс 15 А
Постоянный ток базы
Импульсный ток базы при $t_{\rm H} = 10~{\rm Mc}$ 5 A
Постоянная рассеиваемая мощность коллектора
при $T_{\kappa} = -60 + 25^{\circ}\text{C}$:
с теплоотводом 50 Вт
без теплоотвода
Температура p - n перехода
Температура огружающей среды —60 °СТ _к =
=+125 °C


 $^{^1}$ При $T_{\rm k}\!>\!+25\,^{\rm o}{\rm C}$ $P_{\rm K,\ макс}$ снижается линейно на 0,4 Bt/°C с теплоотводом и на 24 мВт/°С без теплоотвода.

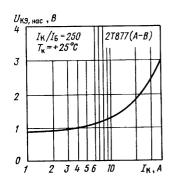

Зависимость статического коэффициента передачи тока от тока эмиттера


Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

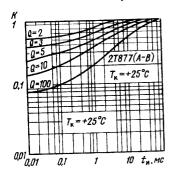
Зависимость напряжения насыщения база — эмиттер от тока коллектора

2T877A, 2T877B, 2T877B

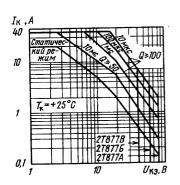
Транзисторы кремниевые эпитаксиально-планарные структуры p-n-p составные универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

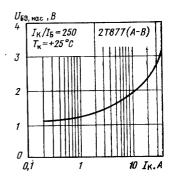

onen parteenne napamerpa	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB} = 10$ В, $I_{\rm S} = 10$ А:	
2T877A 2T877B, 2T877B	75010 000 250018 000
Граничная частота коэффициента передачи тока в	200010 000
схеме ОЭ при $U_{K9}=5$ В, $I_{K}=3$ А, не менее	100 MT.
Граничное напряжение при $I_{K} = 0.1$ А, не менее:	100 МГц
	00 D
	80 B
2T877B	60 B
2Т877В	40 B
Напряжение насыщения коллектор — эмиттер при	
I _K =10 A, I _Б =0,04 A, не более.	2 B
Напряжение насыщения база — эмиттер при I_{K} —	
=10 A, I _Б =0,04 A, не более	3 B
Время включения при U_{K9} =20 В, I_{K} =10 А, I_{B} =	
=0,04 A, типовое значение	0,22* мкс
Время выключения при $U_{K2} = 20$ В. $I_{V} = 10$ А	0,22 Mile
$I_{\rm B}{=}0.04$ А, типовое значение	0,75* мкс
Время спала при $U_{VO} = 20$ В $I_{V} = 10$ А $I_{P} = 0.04$ А	0,70 MKC
типовое значение	0,3* мкс
Емкость коллекторного перехода при $U_{\rm KB}{=}20$ В,	0,5° MKC .
типовое значение	920* A
EMPORTA AMUTTOPHORO RODOVOTO TOU II	830* пФ
Емкость эмиттерного перехода при $U_{\rm ЭБ}{=}3$ В, типо-	1000* *
вое значение	1300* пФ
Обратный ток коллектор — эмиттер при U_{K9} —	
$=U_{K9, \text{макс}}, U_{35} = 1,5 \text{ B}, \text{ не более }$	l MA
Обратный ток эмиттера при $U_{\rm ЭБ}{=}5$ В, не более	5 мА
*	

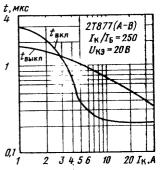
Предельные эксплуатационные данные Постоянное напряжение коллектор — база:

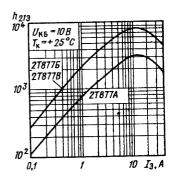

1 + 5

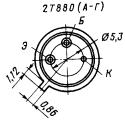
2T877A	80 B
210/10	60 B
2T877B	40 B
Постоянное напряжение коллектор — эмиттер:	D
2T877A	80 B
2T877B	60 B
2T877B	40 B
Постоянное напряжение эмиттер — база .	TOD
Постоянный ток коллоктора	0 D
Постоянный ток коллектора	20 A
Импульсный ток коллектора при $t_{\rm H} = 10 \ {\rm Mc}$	40 A
Постоянный ток базы	1,5 A
Постоянная рассенваемая мощность коллектора	
при $T_{\rm K} = -60 + 25 {\rm °C}$:	
с теплоотводом	50 Вт
без теплоотвода	3 Вт
Температура <i>p-п</i> перехода	+175°C
Температура окружающей среды	-60°C T -
· · · · · · · · · · · · · · · · · · ·	=+125 °C
	— T 120 C

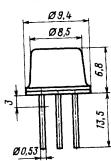

При $T_{\rm K}$ >+25 °C $P_{\rm K,\,Makc}$ снижается линейно на 0,44 Bt/°C с теплоотводом и на 20 мВт/°С без теплоотвода.


Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора


Зависимости коэффициента К от длительности импульса


Области безопасной работы транзисторов


Зависимость напряжения насыщения база — эмиттер от тока коллектора



Зависимости времени включения и выключения от тока коллектора

Зависимости статического коэффициента передачи тока от тока эмиттера

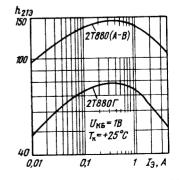
2Т880A, 2Т880Б, 2Т880В, 2Т880Г

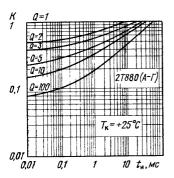
Транзисторы кремниевые эпитаксиально-планарные структуры *p-n-p* универсальные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с гибкими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.

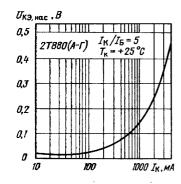

П

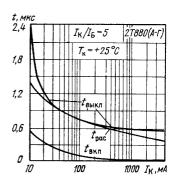
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB} = 1$ В, $I_{9} = 1$ А:	
2T880A, 2T880B, 2T880B	80250
2Τ880Γ	40160
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{K3} = 5$ В, $I_{K} = 0.05$ А	30300* MΓ
Граничное напряжение при $I_{\rm K} = 0.03$ A, не менее:	
2Т880А, 2Т880Б	60 B
2T880B	40 B
2Τ880Γ	80 B
Напряжение насыщения коллектор — эмиттер при	
$I_{\rm K} = 1$ A, $I_{\rm B} = 0.2$ A, He fonce	0,35 B
Напряжение насыщения база — эмиттер при $I_{K} = 1$ A,	-,
/ _E =0.2 A не более	1,3 B
$I_{\rm B}{=}0.2$ A, не более	.,.
THROROE SHRUCHHE	0,08* мкс
Время выключения при U_{K3} =20 В, I_{K} =1 А, I_{B} =	-,
=0.2 А типовое значение	0.6* мкс
=0,2 A, типовое значение	0,0
$I_{r}=0.9$ A TUTOROE SHAYEHUE	0,5* мкс
$I_{ m B}{=}0.2$ A, типовое значение	0,0
типовое значение	200* пФ
Емкость эмиттерного перехода при $U_{\rm E3} = 4$ В, типо-	200 114
вое значение	900* пФ
Обратный ток коллектора при $U_{\mathrm{K}\mathrm{B}}{=}U_{\mathrm{K}\mathrm{B},\mathrm{Makc}},$	300 114
не более	0.2 мА
Обратный ток коллектор — эмиттер при U_{K9} —	0,2 M71
	0,5 мА
$=U_{\text{K3, макс}}, R_{69}=1$ кОм, не более	
Обратный ток эмиттера при $U_{\rm БЭ}{=}4,5$ В, не более	I MA

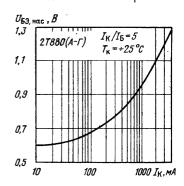
Предельные эксплуатационные данные


Постоянное напряжение коллектор — база: 2T880A, 2T880Г	80 B
and $P = 1 \text{ kOM}$.	
2T880 A 2T8801	100 B
2Т880Б	80 B
2T880B	50 B
D .	
при $R_{63} = \infty$: 2T880A, 2T880Б	60 B
9T880B	40 B
2Τ880Γ	80 B
Постоянное напряжение эмиттер — база	4.5 B
Постоянный ток коллектора	2 A
Импульсный ток коллектора при $t_{\rm H}$ =10 мс	4 A
Импульсный ток коллектора при ти — то же	1 A
Постоянный ток базы	1.5. A
Импульсный ток базы при $t_{\rm H}\!=\!10$ мс	1,0 11
Постоянная рассеиваемая мощность коллектора	
при $T_{\kappa} = -60 + 25$ °C:	F D
с теплоотводом	0 DT
Kes Ten Tootrolls	0,0 01
LAMBADATUDA D-N HEDEXIIIA	100
Температура в перехода. Температура окружающей среды	00 C K
	= +125 °C


 $^{$^{-1}}$ При $T_{\rm K}>+25~{\rm ^{\circ}C}$ $P_{\rm K.\,Makc}$ снижается линейно на 0,04 Bт/°C с теплоотводом и на 6,4 мВт/°С без теплоотвода.


Зависимости статического коэффициента передачи тока от тока эмиттера

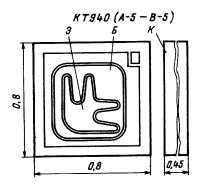



Зависимости коэффициента К от длительности импульса

Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

Зависимости времени включения, выключения, рассасывания от тока коллектора

Зависимость напряжения насы щения база — эмиттер от ток. коллектора


Раздел шестой

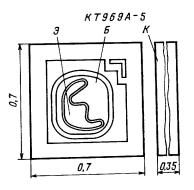
Транзисторы мощные высокочастотные

Транзисторы п-р-п

KT940A-5, KT940B-5, KT940B-5

Транзисторы кремниевые планарные структуры *n-p-n* усилительные. Предназначены для применения в усилителях мощности. Бескорпусные на общей пластине, неразделенные. Тип прибора указывается в паспорте. Масса транзистора не более 0,01 г.

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}30$ мА, не менее	
схеме ОЭ при $U_{K9} = 10 \text{ B}$, $I_{K} = 15 \text{ мA}$, не менее	90 MILE
Напряжение насыщения коллектор — эмиттер при	
Обратный ток коллектора при $U_{\rm KB}{=}250~{\rm B}$ для KT940A-5, $U_{\rm KB}{=}200~{\rm B}$ для KT940B-5, $U_{\rm KB}{=}100~{\rm B}$ для KT940B-5, не более	50 нА


Постоянное напряжение коллектор — база:

Предельные эксплуатационные данные

MTOAOA E	300 B
KT940A-5	OFO B
KT9406-5	200 B
KT940B-5	160 B
Постоянное напряжение коллектор — эмиттер при	
$R_{69} = 10 \text{ kOm}$:	2222
KT940A-5	300B
KT9406-5	250 D
KT940B-5	100 D
Постоянное напряжение эмиттер — база.	5 B
Постоянный ток коллектора	100 MA
Импульсный ток коллектора при $t_u=30$ мкс, $Q=10$	300 MA
Постоянный ток базы	50 мА
Постоянная рассеиваемая мощность коллектора' при	
$T = 40 \pm 45 ^{\circ}\text{C}$ $U_{\text{PQ}} = 100 ^{\circ}\text{B}$	10 Β τ
Температура окружающей среды	$-45 ^{\circ}\text{C}T_{\kappa} =$
roundhartha and the stand	=+85 °C

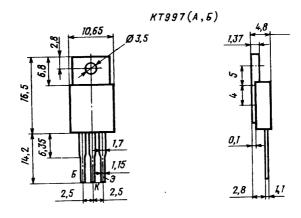
 $^{^{-1}}$ Значение $P_{K_{\text{макс}}}$ указано для транзистора, помещенного в корпус с $R_{T(\Pi-K)} = 10$ °C/Bт.

KT969A-5

Транзистор кремниевый планарный структуры n-p-n усилительный. Предназначен для применения в выходных каскадах видеоусилителей телевизионных приемников. Бескорпусные, на пластине, неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0.01 г.

300 B

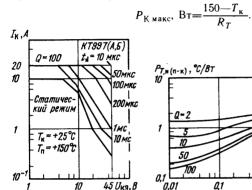
Электрические параметры

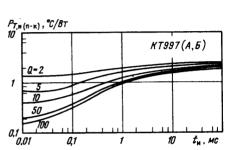

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}15$ мА, не менее	50
Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{K,9} = 10 \text{ B}$, $I_{K} = 15 \text{ mA}$, не менее	
Напряжение насыщения коллектор — эмиттер при	1 В 50 нА

Предельные эксплуатационные данные

Постоянное напряжение коллектор — база	300 B
Постоянное напряжение коллектор — эмиттер при $R_{69} = \infty$	250 B 5 B 100 mA 200 mA
Постоянный ток базы	6 Вт
Температура <i>p-п</i> перехода	+100 C

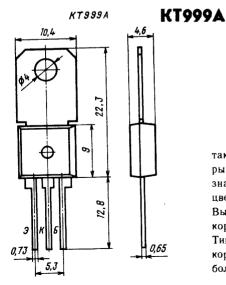
КТ997А, КТ997Б


Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n переключательные. Предназначены для применения в устройствах управления сверхбольшими интегральными схемами запоминающих устройств цилиндрических магнитных доменов. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 3 г.



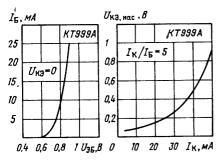
Ostoribu teemin	
Статический коэффициент передачи тока в схеме ОЭ	
при U_{K9} =1 В, I_{K} =4 А, не менее: КТ997А при T_{**} =+25 °C	40
	20
KT0075 mpy $T = +25$ °C.	20
$T_{\kappa} = +85 \text{ н} - 45 \text{ °C}$	10
Молиль коэффициента передачи тока на высокои	
частоте при U_{K9} =10 В, I_{K} =0,5 А, f =30 МГц, не ме-	
dactore libra o K3—10 D, 1K	1,7
нее	
Траничное наприжение при тк—о, тту —	45 B
менее	
Напряжение насыщения комментор $A = 0.8 \text{ A}$	
1 _K =8 A, 1 _B =0,4 A AM K 1991 A 1 _K =0 11, 1 _B 0,0 1	1 B
для К199/Б, не облее	
Напряжение насыщения коллектор $I_{\rm K}=8$ A, $I_{\rm B}=0.4$ A для КТ997A и $I_{\rm K}=8$ A, $I_{\rm B}=0.8$ A для КТ997B, не более	1,5 B
$I_{\rm B}{=}0.8$ A, не более	.,0 -
Время включения при $U_{K3}=25$ В, $U_{35}=-5$ В,	300* нс
1. = 5 A /r = 0.5 A. TUHOBOE SHAYERINE	300 nc
Время рассасывания при $U_{\rm K9}=25$ В, $U_{\rm 35}=-5$ В,	=00+
$I_{\nu}=5$ A $I_{r}=0.5$ A TUNOBOE SHAYEHUE	500* нс
$U_{\text{norm}} = 25 \text{ B}, U_{\text{norm}} = -5 \text{ B}, I_{\text{K}} = 5 \text{ A},$	
$I_{\rm B}$ =0,5 A, типовое значение	140* нс
$I_B = 0,5$ A, типовое эна темповое в $U_{WP} = 45$ В, не более:	
Oopathbu tok komektopa npn o kb	10 мкА
$T_{\kappa} = +25 ^{\circ}\text{C}$	20 мкА
$I_{\kappa} = +85 \text{ и} - 45 \text{ C}$. Обратный ток эмиттера при $U_{36} = 5 \text{ B}$, не более.	100 мкА
Обратный ток эмиттера при о 36-о о, не обност	
Предельные эксплуатационные данн	ые
Постоянное и импульсное напряжение коллектор —	45 B
эмиттер при $R_{69} = \infty$	
Постоянное напряжение база — эмиттер	
Постоянный ток коллектора	10 1.
IA TOR KOLLIER TOR KOLLIERTODA	20
Homoguning tok 683bl	
Импульсный ток базы	0 A
•	

Постоянная рассеиваемая мощность коллектора при	
$T_{K} = +25^{\circ}\text{C}$	50 Вт
Температура $p-n$ перехода	
Тепловое сопротивление переход — корпус	
Тепловое сопротивление переход — среда	
Температура окружающей среды	$-45^{\circ}\text{C}T_{\kappa} =$
	$=+85 ^{\circ}\text{C}$

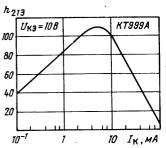

 $^{^{\}rm I}$ При $T_{\rm K}{>}{+}25\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

Области безопасной работы транзисторов

Зависимости импульсного теплового сопротивления перекод — корпус о длительности импульса

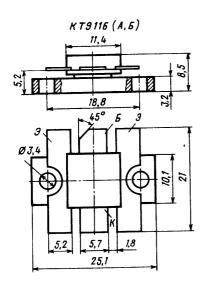


Транзистор кремниевый эпитаксиально-планарный структуры *п-р-п* усилительный. Предназначен для применения в блоке цветности цветного телевизора. Выпускается в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.


oneniph reeme mapamerpa	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K3}{=}10$ В, $I_{\rm K}{=}25$ мА, не менее:	
при ОКЭ=10 В, 1К=20 мА, не менсе.	
$T_{\kappa} = +25 ^{\circ}\text{C}$	50
$T_{\kappa} = +100 ^{\circ}\text{C}$	30
T = -45 °C	20
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{\rm K3} = 10^{\circ}$ В, $I_{\rm K} = 10^{\circ}$ мА, не менее	60 ΜΓμ
Граничное напряжение при $I_{\rm K} = 10$ мA, не менее	250 B
Напряжение насыщения коллектор — эмиттер при	
$I_{\rm k} = 15$ мА, $I_{\rm B} = 3$ мА, не более:	
	1 B •
$T_{\kappa} = +25 ^{\circ}\text{C}$	2 B
Емкость коллекторного перехода при U_{KB} =30 В,	
не более	2 пФ
Емкость эмиттерного перехода при $U_{35}=3$ В, не	
более	30 пФ
Обратный ток коллектора при $U_{\rm KB}{=}250$ В, не более:	
T_{κ} = +25 и -45 °C	0,1 мкА
$T_{\kappa} = +100 ^{\circ}\text{C}$	20 мкА
Обратиый ток эмиттера при $U_{\rm 36} = 5$ В, не более	10 мкА
γ (γ)	
🦈 Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база	250 B
Постоянное напряжение коллектор — эмиттер при	
$R_{69} = 10 \text{ Om}$	250 B
Постоянное напряжение эмиттер — .база	5 B
Постоянный ток коллектора	50 мА
Импульсный ток коллектора	100 мА
Постояниая рассеиваемая мощность коллектора	
при <i>T</i> _к ≤ +25 °C:	
с теплоотводом	5 Вт
без теплоотвода	1,6 Вт
	1.150.0C
Температура <i>p-п</i> перехода	
Тепловое сопротивление переход — корпус	
Тепловое сопротивление переход — среда	
Температура окружающей среды	$-45 ^{\circ}\text{C}T_{\text{K}} =$
	$= +100 ^{\circ}\text{C}$

 $^{^{-1}}$ При $T_{\rm k}{>}+25\,{\rm ^{\circ}C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

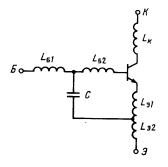
$$P_{\text{K, Make}}$$
, $\text{Bt} = \frac{150 - T_{\text{K}}}{R_T}$.



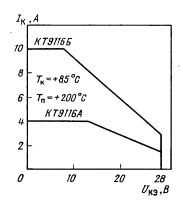
Зависимость тока базы от напряжения база — эмиттер Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

Зависимость статического коэффициента передачи тока от тока коллектора

KT9116A, KT91165

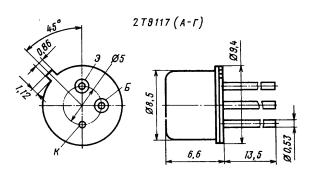

Транзисторы кремниевые эпитаксиально-планарные структуры *п-р-п* генераторные. Предназначены для применения в линейных усилителях мощности в схеме ОЭ в диапазоне частот 170...230 МГц при напряжении питания 28 В. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 9 г.

Электрические параметры


Выходная мощность в пике огибающей на частоте $f{=}225~{\rm M}\Gamma_{\rm LL}$ при $U_{\rm n}{=}28~{\rm B},~T_{\rm k}{\leqslant}{+}40~{\rm ^{\circ}C},~{\rm He}$ менее: KT9116A при $P_{\rm BX}{=}0,2~{\rm Bt},~I_{\rm K}{=}1,2~{\rm A}$ 5 Вт KT9116Б при $P_{\rm BX}{=}1,5~{\rm Bt},~I_{\rm K}{=}2,6~{\rm A}$ 15 Вт

КТ9116В при $P_{\text{вых}} = 15$ Вт, $I_{\text{K}} = 2,6$ А Коэффициент комбинационных составляющих третьего порядка на частоте $f = 225$ МГц при $U_{\text{п}} = 28$ В,	25 10
КТ9116Б при $P_{\rm Bыx}$ = 15 Вт, $I_{\rm K}$ = 2,6 А Емкость коллекторного перехода при $U_{\rm KB}$ = 28 В, не	—58 дБ —55 дБ
более: KT9116A	55 π Φ 155 π Φ
R ₆₃ =10 Ом, не более: при T_{κ} =+25 °C: КТ9116А	30 мА [*] 100 мА
КТ9116Б	60 мА 200 мА
при $T_{\rm K}\!=\!+25^{\circ}{\rm C}$: KT9116A	4 мА 14 мА
КТ9116A	28 mA
*	no reme g
Предельные эксплуатационные данн	ые .
Постоянное напряжение питания	28 B
The magnitude Hannaweuve Kolliektill — Janitich uhn	
R_{69} =10 Ом	55_B
Постоянное напряжение эмиттер — база	4 B
Homograph in tor roughly tong	
VT0116Å	4 A
KT91166	10 11
Постоянная рассенваемая мощность коллектора при $T < \pm 40 ^{\circ}\mathrm{C}$	•
" WTOLICA	46 Вт
КТ9116Б	/O./ DI
	+200°C
Топлава сопротирление перехол — корпус:	95°C/RT
КТ9116Б	2,5 °C/Bτ
КТ9116Б	$-45 ^{\circ}\text{C}T.=$
Температура окружающей среды	=+85 °C

$$P_{K, \text{ Make}}, B_{T} = \frac{200 - T_{K}}{R_{T(\Pi - K)}}$$


Электрическая схема транзисторов:

Области безопасной работы транзисторов

2T9117A, 2T9117B, 2T9117B, 2T9117F

Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n переключательные. Предназначены для применения в усилителях и переключающих устройствах. Выпускаются в металлическом корпусе с гибкими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.

Статический коэффициент передачи тока в схеме ОЭ		
при $U_{KB}=10$ В, $I_{B}=0.15$ А:		
2Т9117А, 2Т9117Б, 2Т9117В	80250*	
2Τ9117Γ		
Граничная частота коэффициента передачи тока в		
схеме ОЭ при $U_{\rm K9}$ =5 В, $I_{\rm K}$ =0,01 А	50300*	МΓц

2T9117A, 2T9117B	40 B
$2T9117\Gamma$	80 B
$I_{\rm K}$ =0,15 A, $I_{\rm B}$ =0,015 A, не более	0,3 B
Напряжение насыщения одза — эмиттер при $I_{\rm K}=$ =0,15 A, $I_{\rm B}=$ 0,015 A, не более	1,1 B
Время включения при U_{K9} =20 В, I_{K} =0,15 А, I_{B} =0,015 А, типовое значение	0,2* мкс
Время выключения при U_{K3} =20 В, I_{K} =0,13 А, I_{B} =0,015 А, типовое значение	0,9* мкс
Емкость коллекторного перехода при С КВ=3 В, типо-	40* пФ
вое значение	
значение	250* пФ
Обратный ток коллектора при $U_{KB} = U_{KB, \text{ макс}}$, не оо-	0,1 мА
лее	O,1 M/1
$=U_{\rm K9, Makc}$, $R_{\rm 69}=1$ кОм, не более	0,2 мА
Обратный ток эмиттера при U_{36} =4,5 В, не более	1 мА
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база:	
2T9117A, 2T9117F	100 B
2T9117B	80 B 50 R
2Т9117В	30 D
$n_{DH} P = 1 \text{ kOm}$	
2 Τ 9117 A ., 2 Т 9117Γ	100 B
2T9117b'	80 B
2T9117B	50 B
при <i>R</i> _{бэ} =∞: 2Т9117A, 2Т9117Б	60 B
2T9117B	00 B
	40 B
2Т9117Г	40 B 80 B

Граничное напряжение при $I_{K} = 0.03$ A, не менее:

 $T_{\kappa} = -60... + 25 \, ^{\circ}\text{C}$:

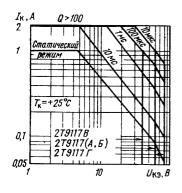
с теплоотводом

без теплоотвода . .

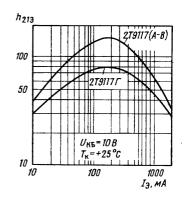
Импульсный ток базы при $t_{\rm H} = 10$ мс . . .

Постоянная рассеиваемая мощность коллектора при

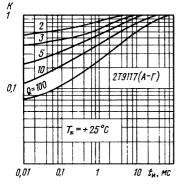
0.5 A


. 0,8 Вт

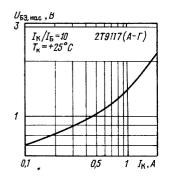
 $=+125 \, ^{\circ}\text{C}$


. 1 A 2 **A** 0.2 A

. . 5 Вт

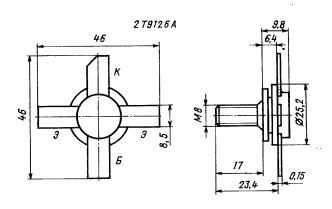

 $^{^{\}rm I}$ При изменении $T_{\rm K}$ от +25 до +125 °C $P_{\rm K,\ макс}$ снижается линейно на 0,04 Bt/°C с теплоотводом и на 6,4 мВт/°C без теплоотвода.

Области безопасной работы транзисторов

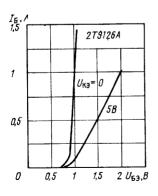


Зависимости статического коэффициента передачи тока от тока эмиттера

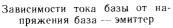
Зависимость напряжения насыщения коллектор — эмиттер от тока коллектора

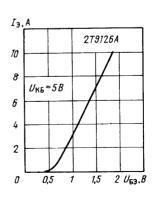

Зависимости коэффициента К от длительности импульса

Зависимость напряжения насыщения база — эмиттер от тока коллектора


2T9126A

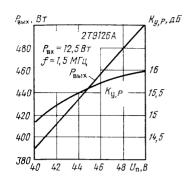
Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* генераторный. Предназначен для применения в усилителях мощности и генераторах метрового и дециметрового диапазонов длин волн. Выпускается в металлокерамическом корпусе с винтом и полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 30 г.

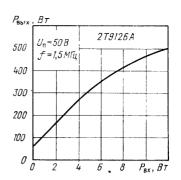

Выходная мощность на частоте $f=1,5$ МГц при	
$U_{\rm n} = 50 \text{ B}, \text{ He MeHee} \dots \dots \dots$	500 B _T
Коэффициент усиления по мощности на частоте	
$f = 1.5$ МГц при $U_n = 50$ В, $P_{\text{вых}} = 500$ Вт	13*16*18* дБ
Коэффициент полезного действия на частоте $f=$	
$=1.5$ МГц при $U_{\rm r}=50$ В, $P_{\rm BMy}=500$ Вт	6070*75* %
Статический коэффициент передачи тока в схеме ОЭ	, ,
при $U_{KS} = 10 \text{ B}, I_{3} = 5 \text{ A}$:	
$T = +25 ^{\circ}\text{C}$	1040*100*
$T = +25 ^{\circ}\text{C}$	1050*120*
T=-60 °C	520*50*
Граничная частота коэффициента передачи тока в	
схеме ОЭ при $U_{\rm K9} = 50$ В, $I_{\rm K} = 8$ А	100140*
I RO I	160* МГц
Напряжение насыщения коллектор — эмиттер при	
$I_{K}=10 \text{ A}, I_{B}=1 \text{ A} \dots \dots \dots \dots \dots$	0,3*0,4*0,5* B
Емкость коллекторного перехода при $U_{\rm KB}$ =50 В	400*450*
1 1 1	500 пФ
Емкость эмиттерного перехода при $U_{\Im 5} = 0$	0,02*0,035*
,	0,1 мкФ
Конструктивная емкость эмиттер — корпус, не более	7,5 * пФ
Конструктивная емкость коллектор — корпус, не бо-	
лее	5,7* пФ
Конструктивная емкость база — корпус, не более	1,6* пФ


Полное входное сопротивление на большом сигнале при $P_{\rm BM\lambda}{=}500$ Вт, $U_{\rm II}{=}50$ В, не более: $f{=}1,5$ МГц	$(0,4-j1,6)^*$ $(0,58-j3,2)^*$	Ом Ом
D 1() () () ()		мА
$R_{69} = 10 \text{ GM}.$ $T = +25 ^{\circ}\text{C}$	0* 20* 200	мA
T=+125 °C	2*30*300	мA
$T = +25 ^{\circ}\text{C}$ $T = +125 ^{\circ}\text{C}$ $T = -60 ^{\circ}\text{C}$	1* 100* 500	
		MIL
Индуктивность эмиттера, не более	1,5 nin	
Индуктивность коллектора, не более	0,5 nin 95* uFu	
Индуктивность базы, не более	2,0 HI H	
Предельные эксплуатационные данны	ae	
Постоянное напряжение питания	50 B	
Постоянное напряжение коллектор — ЭМИТТЕР ПРИ		
R_{69} =10 Ом	100 B	
Постоянное напряжение база — эмиттер	4 B	
Постоянный ток коллектора	·30 A	
Постоянный ток базы	4 A	
Постоянная рассеиваемая мощность коллектора при		
$T_{\kappa} = -60 + 50 ^{\circ}\text{C}$	330 Вт	
Средняя рассеиваемая мощность коллектора в дина-		
мическом режиме при $T_{\rm k} = -60 + 50$ °C	330 Вт	
Постоянная высокочастотная мошность, падающая		
TO DESCRIPTION OF THE PROPERTY	25 В т	
Температура р-п перехода.	+200 °C	
Температура <i>p-n</i> перехода	0,45 °C/Вт	
Минимальная рабочая частота	0,1 МГц	
И так в том		

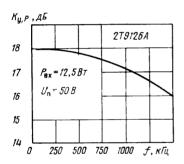
Температура окружающей среды .

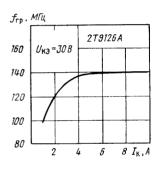
Коэффициент стоячей волны по напряжению коллекторной цепи при $P_{\rm выx}{=}250~{\rm Bt},\,U_{\rm п}{=}30~{\rm B}$ и кратковременном рассогласовании (1 с).

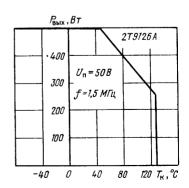



30

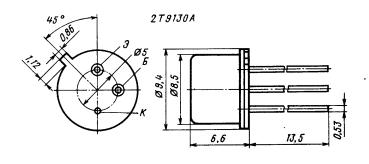
 $-60 \, ^{\circ}\text{C...}T_{\text{K}} = +125 \, ^{\circ}\text{C}$


Зависимость тока эмиттера от напряжения база - эмиттер


Зависимости выходной мощности и коэффициента усиления от напряжения питания


Зависимость выходной мощности от входной

Зависимость коэффициента усиления от частоты


Зависимость граничной частоты от тока коллектора

Зависимость выходной мощно сти от температуры корпуса

2T9130A

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* усилительный. Предназначен для применения в широкополосных видеоусилителях мониторов. Выпускается в металлическом корпусе с гибкими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.

Электрические параметры

, , , , , , , , , , , , , , , , , , , ,	ndo t
Статический коэффициент передачилока в схеме ОЭ	B. R
при $U_{KB} = 9$ В, $I_{9} = 20$ мА:	
T=+25 °C	6080*250
T=+125 °C	70400
T=-60 °C	13250
Граничная частота коэффициента передачи тока в	
схеме ОЭ при U_{K9} =10 В, I_{K} =20 мА, не менее	200 ΜΓιι
Граничное напряжение при $I_{K} = 10 \text{ мA}$	250280*350* B
Напряжение насыщения коллектор — эмиттер при	
$I_{\rm K}$ =20 MA, $I_{\rm B}$ =2 MA	0,1*0,2*1 B
Напряжение насыщения база — эмиттер при I_{K}	, ,
$=20 \text{ MA}, I_{B}=2 \text{ MA} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	0,8*0,9*1,1 B
Емкость коллекторного перехода при $U_{\rm KB} = 10~{\rm B}$	4,2*5*6* πΦ
Емкость эмиттерного перехода при $U_{3b} = 1 \; B \; \ldots$	80*90*
Zimnocia simirrophoro noponoga npi - 36	100* пФ
Обратный ток коллектора при $U_{\rm KB}$ =250 В, не б олее:	
$T=+25^{\circ}\text{C}$	1 мкА
T=+125 °C	10 мкА
Обратный ток эмиттера при $U_{\rm 26} = 6$ В, не более	
- тр-тини тур	
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база	250 B
Постоянное напряжение эмиттер — база	6 B
Hottoninoe naupamenne smartep ousa	150 1

150 MA

300 мА 100 мА

200 mA

Постоянный ток коллектора . . .

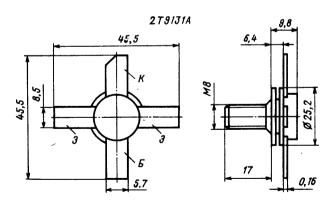
Постоянный ток базы

Импульсный ток коллектора при $t_{\scriptscriptstyle \rm H}{=}500$ мкс, $Q{=}2$

Импульсный ток базы при $t_u = 500$ мкс, Q = 2.

Постоянная рассеиваемая мощность коллектора:	
с теплоотволом 1 при $T_{\nu} = -60 + 45 ^{\circ}\mathrm{C}$.	10 Вт
без теплоотвода ² при $T = -60 + 25$ °C	1 Вт
Температура р-п перехода	+150 °C
Тепловое сопротивление переход — корпус	10.5 °C/Bτ
Тепловое сопротивление переход — среда	125 °C/Вт
Температура окружающей среды	$-60 ^{\circ}\text{C}$
Температура окружающей среды	$=+125 {}^{\circ}\text{C}^{\text{K}}$

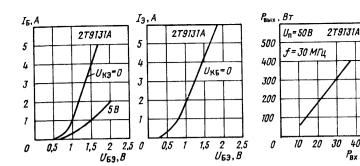
 $^{-}$ При $T_{\rm K}\!>\!+45\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{K, \text{ make}}, B_T = \frac{150 - T_K}{10.5}.$$

² При *T*>+25 °C

$$P_{K, \text{ Ma KC}}, B_{T} = \frac{150 - T}{125}.$$

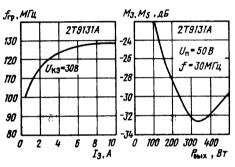
2T9131A

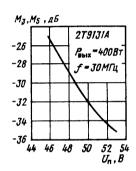

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* генераторный. Предназначен для применения в линейных широкополосных усилителях мощности, генераторах в диапазоне частот 1,5...30 МГц при напряжении питания 50 В. Выпускается в металлокерамическом корпусе с винтом и полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 30 г.

Выходная мощность на частоте $f=30$ М Γ ц при	
$U_{\rm n}=50$ B, he weree	400 Bt
Коэффициент усиления по мощности на частоте	
$f=30$ МГц при $U_0=50$ В, $P_{\text{вых}}=400$ Вт	10*13*16*
Коэффициент полезного действия коллектора на ча-	
стоте $f=30$ МГц при $U_n=50$ В, $P_{\text{вых}}=400$ Вт	60*65*70* %

Коэффициент комбинационных составляющих третьего и пятого порядков на частоте f =30 МГц при $U_{\rm n}$ =50 В, $P_{\rm Bux}$ =400 Вт	—35*—32* —30* дБ
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}10$ А: $T_{\rm K}{=}{+}25^{\circ}{\rm C}$	1040*100* 1050*200* 512*70*
Граничное напряжение при $I_{\rm K}{=}200$ мА Напряжение насыщения коллектор — эмиттер при $I_{\rm K}{=}25$ А, $I_{\rm B}{=}5$ А	180* ΜΓ _H 55*60*65* B 1,2*1,8*2,5* B 500*600* 800 πΦ
Емкость эмиттерного перехода при $U_{\Im B}{=}1~{\rm B}$ Входное сопротивление на большом сигнале при	0,009*0,09* 0,1 мкФ
Входаю сопротивление и объекты в том $U_{\rm H}=50~{\rm B}$, $P_{\rm Bыx}=400~{\rm B}$ т, $f=30~{\rm M}$ Гц, типовое значение	(0,3+j2)* Om
$T_{\kappa} = +25 ^{\circ}\text{C}$ $T_{\kappa} = +125 ^{\circ}\text{C}$ $T = -60 ^{\circ}\text{C}$	1*50*200 мА 3*80*300 мА 10*100* 300 мА
Обратный ток эмиттера при $U_{\mathfrak{I}}=4~\mathrm{B}$	1*t50*600 мА
Предельные эксплуатационные данны	ae 🧓 .
Постоянное напряжение питания	50 B
Постоянное напряжение питания	
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A 7 A
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A 7 A 175 Bt 350 Bt
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A 7 A 175 Bt 350 Bt
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A 7 A 175 Bt 350 Bt 175 Bt 350 Bt 40 Bt +200 °C 0,425 °C/Bt 30:1 -60 °CT _K = =+125 °C
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A 7 A 175 Bt 350 Bt 175 Bt 350 Bt 40 Bt +200 °C 0,425 °C/Bt 30:1 -60 °CT _K = =+125 °C
Постоянное напряжение питания	50 B 100 B 4 B 25 A 40 A 7 A 175 Bt 350 Bt 175 Bt 350 Bt 40 Bt +200 °C 0,425 °C/Bt 30:1 -60 °CT _K = =+125 °C

 $^{^{2}}$ При $P_{\text{вых}} = 150 \text{ Вт.}$

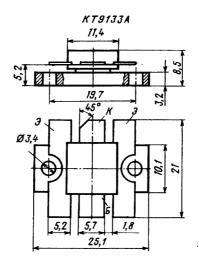



Зависимости тока базы от напряжения база — эмиттер

Зависимость тока эмиттера от напряжения база — эмиттер Зависимость выходной мощности от входной

40 50

PRY, BT

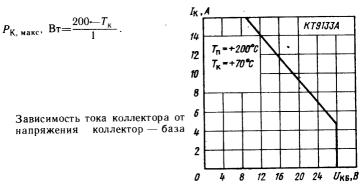


Зависимость граничной частоты от тока эмиттера Зависимость коэффициента нелинейных искажений 3-го и 5-го порядков от выходной мощности Зависимость коэффициента нелинейных искажений 3-го н 5-го порядков от напряжения питания

KT9133A

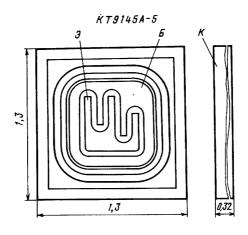
Транзистор кремниевый эпитаксиально-планарный структуры *п-р-п* генераторный. Предназначен для применения в линейных усилителях мощности в схеме ОЭ в диапазоне частот 170...230 МГц при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 9 г.

Электрические параметры


Выходная мощность в пике огибающей на частоте	
f =225 МГц при $U_{\rm n}$ =28 В, $I_{\rm K}$ =3,5 А, $P_{\rm BX}$ =5,35 Вт, $T_{\rm K}$ ≤ +40 °C, не менее	30 Вт
	30 D1
Коэффициент усиления по мощности на частоте	
f =225 МГц при $U_{\rm H}$ =28 В, $I_{\rm K}$ =3,5 А, $P_{\rm BMX}$ =30 Вт,	
$T_{\kappa} \leqslant +40 ^{\circ}\text{C}$, he we hee	5,6
Коэффициент комбинационных составляющих треть-	
его порядка на частоте $f=225$ МГц при $U_n=28$ В,	
$I_{\rm K}$ =3,5 A, $P_{\rm BMX}$ =30 Bt, $T_{\rm K} \leqslant +40^{\circ}{\rm C}$, не более.	53 дБ
Модуль коэффициента передачи тока на высокой ча-	
стоте при $U_{K3} = 10$ В, $I_{K} = 5$ А, $f = 100$ МГц, не ме-	
	2,4
нее	•
нее	7 A
Постоянная времени цепи обратной связи на высокой	
частоте при $U_{KB} = 5$ В, $I_{9} = 0.8$ А, $f = 5$ МГц, не	
более	30 пс
Емкость коллекторного перехода при $U_{\rm KB}{=}28$ В,	
не более	160 пФ
Обратный ток коллектор — эмиттер при $U_{\rm K3}$ =55 В,	
$R_{69} = 10 \text{OM}$, не более	200 мА
Обратный ток эмиттера при $U_{26} = 4$ В, не более	20 мА
Индуктивность коллектора, типовое значение	0,9* нГн
Индуктивность эмиттера, типовое значение	0,46* нГн
Индуктивность базы, типовое значение	1,26* нГн
ring in the block of the book in a series	1,20 HIH

Предельные эксплуатационные данные

тостоянное напряжение коллектор — эмиттер	при	
$R_{69} = 10 \text{ Om}$		55 B
Постоянное напряжение эмиттер — база		4 B
Постоянный ток коллектора		16 A


Постоянная рассеиваемая мощность коллектора при	100 8
$\tau \sim \pm 70$ °C	130 Вт
$T_{\text{outpopartypa}} = n \text{ Tenexolla}$	+200°C
Тепловое сопротивление переход — корпус	I C/BT
Температура окружающей среды	$-45^{\circ}CI_{K} =$
aî,	=+85 °C

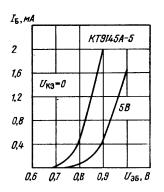
 $^{^{1}}$ При $T_{\rm K}\!\!>\!\!+70\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

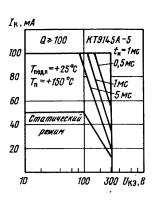
KT9145A-5

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* универсальный. Предназначен для применения в линейных и ключевых схемах. Бескорпусный, на пластине. Тип прибора указывается в этикетке. Масса транзистора не более 0,003 г.

Электрические параметры

• • • • • • • • • • • • • • • • • • • •	
Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB} = 10$ В, $I_3 = 10$ мА, не менее	20
Граничная частота при $U_{K3} = 10 \text{ B}, I_{K} = 10 \text{ мA}$	5065*70* МГц
Граничная частота при $U_{\rm K3}{=}10~{\rm B}, I_{\rm K}{=}10~{\rm mA}$ Граничное напряжение при $I_{\rm 3}{=}30~{\rm mA}$, не менее	300 B
Напряжение насыщения коллектор — эмиттер при	
$I_{K} = 10 \text{ MA}, I_{B} = 1 \text{ MA}$	0,3*0,5*1B
Напряжение насыщения база — эмиттер при I_{K} =	
$=10$ MA, $I_{B}=1$ MA	0,7*0,8*1,2 B
Обратный ток коллектора при $U_{\rm KB}{=}300~{ m B}$, не более	1 мкА
Обратный ток эмиттера при $U_{36} = 5$ В, не более	1 мкА

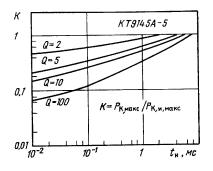

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база	500 B
Постоянное напряжение коллектор — эмиттер при	
$R_{6a}=1$ KOM	500 B
Постоянное напряжение эмиттер — база	5 B
Постоянный ток коллектора	
Импульсный ток коллектора при t_{μ} =500 мкс, Q =2	
Постоянный ток базы	
Импульсный ток базы при $t_{\mu} = 500$ мкс, $Q = 2$	
Постоянная рассеиваемая мощность коллектора при	
$T_{\rm w}=+25{\rm °C}$	5 Вт
Температура р-п перехода	
Тепловое сопротивление переход — подложка	25 °С/Вт
Температура окружающей среды	
	=+125 °C *
	1 .20

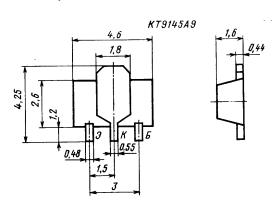
 $^{^{\}rm I}$ При $T_{\rm k}{>}+25\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ Make}}, B_{T} = \frac{150 - T_{K}}{25}.$$

173



Зависимости тока базы от напряжения база — эмиттер

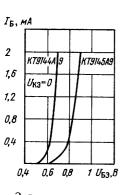

Области безопасной транзистора работы

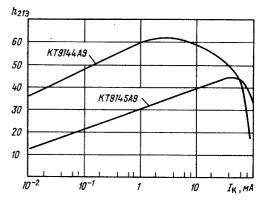
Зависимости коэффициента К от длительности импульса

KT9145A9

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* универсальный. Предназначен для применения в ключевых схемах, импульсных модуляторах, преобразователях, линейных стабилизаторах напряжения. Выпускается в пластмассовом корпусе с жесткими выводами. На корпус наносят условный знак «6А». Тип прибора указывается в этикетке. Масса транзистора не более 0,07 г.

•	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}10$ В, $I_{\rm S}{=}10$ мА	2040*150
Граничная частота коэффициента передачи тока в схеме ОЭ при U_{K9} =10 В, I_{K} =10 мА	5065*70* ΜΓц 300 B
типовое значение	

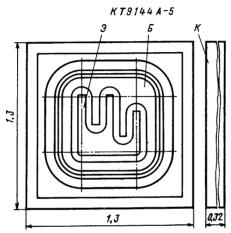

Напряжение насыщения база — эмиттер при $I_{\rm K}=$ =10 мA, $I_{\rm B}=1$ мA	0,7*0,8*1,2 B
Обратный ток коллектора при $U_{\rm KB}{=}500$ В, не более	1 мкА 1 мкА


Предельные эксплуатационные данные

Постоянное напряжение коллектор — база	500 B
Постоянное напряжение коллектор — эмиттер при	#00 P
$R_{69}=1$ kOm, $dU_{K9}/dt=250$ B/mkc	500 B
Постоянное напряжение эмиттер — база	5 B
Постоянный ток коллектора	50 mA
Импульсный ток коллектора при $t_{\rm H}$ =500 мкс, Q =2	100 мА
Постоянная рассеиваемая мощность коллектора при	
$T_{\kappa} = -60 + 25 ^{\circ}\text{C}$:	
с теплоотводом	1 Вт
без теплоотвода ²	0,3 Вт
Температура <i>p-n</i> перехода	+150 °C
Тепловое сопротивление переход — корпус	125°C/Вт
Тепловое сопротивление переход — среда	416°C/Вт
Температура окружающей среды	
	$=+100 ^{\circ}\text{C}$

 $^{^{\}text{I}}$ При $T_{\text{K}}\!>\!+25\,^{\circ}\text{C}$ постоянная рассеиваемая мощность коллектора определяется из выражения $P_{K, \text{ Mage}}, B_{T} = \frac{150 - T_{K}}{125}$

$$P_{K, \text{ Make}}, B_T = \frac{150 - T}{416}$$
.


Зависимости тока базы от напряжения база — эмиттер

Зависимости статического коэффициента передачи тока от тока коллектора

Транзисторы р-п-р

KT9144A-5

Транзистор кремниевый эпитаксиально-планарный структуры *p-n-p* универсальный. Предназначен для применения в линейных и ключевых схемах. Бескорпусный, на пластине, кристаллы неразделенные. Тип прибора указывается в этикетке. Масса транзистора не более 0.003 г.

Электрические параметры

Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}10$ В, $I_{\rm S}{=}10$ мА, не менее	20 '
Границияя изстота коэффициента перелачи тока в	
схеме ОЭ при $U_{K9} = 10$ В, $I_{K} = 10$ мА	3035*40* МГц
схеме ОЭ при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}10$ мА Граничное напряжение при $I_{\rm 3}{=}30$ мА, не менее	300 B
Напряжение насыщения коллектор — эмиттер при	
$I_{K}=10 \text{ MA}, I_{B}=1 \text{ MA}$	0,3*0,5*1 B
Напряжение насышения база — эмиттер при $I_{\rm K}$ =	
$=10$ MA, $I_{\rm c}=1$ MA.	0,7*0,8*1,2 B
Обратный ток коллектора при $U_{\rm KB} = 500$ В, не более	l mkA
Обратный ток эмиттера при $U_{36} = 5$ В, не более	1 мкА

Предельные эксплуатационные данные

• • • • • • • • • • • • • • • • • • • •		
Постоянное напряжение коллектор — база		500 B
Постоянное напряжение коллектор — эмитте	ер при	
$R_{69}=1$ кОм		500 B
Постоянное напряжение эмиттер — база		5 B
Постоянный ток коллектора		50 мА
Импульсный ток коллектора при $t_{\mu} = 500$ мкс	Q=2	100 mA
Постоянный ток базы		5 мА
Импульсный ток базы при $t_{\rm H}$ =500 мкс, Q =2		10 mA

Постоянная рассеиваемая мощность коллектора при	
$T \leq \pm 25$ °C	5 Вт
Температура р-п перехода	+150 °C
Тепловое сопротивление переход — подложка	25 °C/Βτ
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\text{K}} =$
	=+125 °C

 $^{^{\}rm t}$ При $T_{\rm k}{>}+25\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{\rm K, \, Makc}, \, {\rm Bt} = \frac{150 - T_{\rm K}}{25} \, .$$

KT9144A9

Транзистор кремниевый эпитаксиально-планарный структуры *p-n-p* универсальный. Предназначен для применения в ключевых схемах, импульсных модуляторах, преобразователях, линейных стабилизаторах напряжения. Выпускается в пластмассовом корпусе с жесткими выводами. На корпус наносят условный знак «5А». Тип прибора указывается в этикетке. Масса транзистора не более 0,07 г. Габаритный чертеж корпуса см. КТ9145А9.

	, Δ.
Электрические параметры	
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB}{=}10$ В, $I_9{=}10$ мА Граничная частота коэффициента передачи тока в схеме ОЭ при $U_{\rm K9}{=}10$ В, $I_{\rm K}{=}10$ мА Граничное напряжение при $I_{\rm K}{=}30$ мА, не менее	3035*40* МГц 300 В
типовое значение	380* B
Напряжение насыщения коллектор — эмиттер при $I_{\rm K}\!=\!10$ мА, $I_{\rm B}\!=\!2$ мА, не более	0,6 B
=10 мА, $I_{\rm b}=2$ мА	

Предельные эксплуатационные данные

Импульсный ток базы при $t_{\rm H}$ =500 мкс, Q=2 Постоянная рассеиваемая мощность коллектора при $T_{\rm K}$ = $-60...+25\,^{\circ}{\rm C}$:

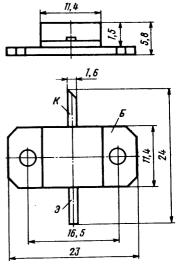
118

с теплоот	воло	м¹.										1 Вт
с теплоот без тепл	оотво	ода ²										0,3 Вт
оез тепл Температура	p-n	пере	ход	а								+150 °C
Townords COIII	отив	лени	е по	ene	oxe	л –	– к	COD	пус			125°C/Вт
Tarropoe COII	поти	алени	е г	ien	exc	οл		cpe	да			410 °C/DT
Температура	OKDV	жаюі	цей	i c	pe,	ды		:				$-60^{\circ}CI_{\kappa} =$
Temneparypa	F J				•							$=+100 {}^{\circ}\text{C}$

При $T_{\rm k}\!\!>\!\!+25\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ Makc}}, B_{T} = \frac{150 - T_{K}}{125}$$

² При
$$T>+25$$
 °С $P_{K, \text{ макс}}$, $B_T = \frac{150-T}{416}$.


Раздел седьмой Транзисторы мощные сверхвысокочастотные

Транзисторы п-р-п

КТ984А, КТ984Б

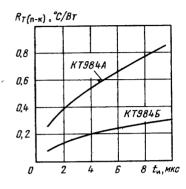
Транзисторы кремниевые эпитаксиально-планарные структуры *п-р-п* генераторные. Предназначены для применения в усилителях мощности и генераторах на частотах 720...820 МГц в схеме ОБ при напряжении питания 50 В. Выпускаются в металло-керамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 7 г.

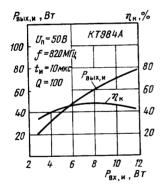
 $T_{\rm K} \leq +40 \, {\rm °C}$

KT984 (A, 5)

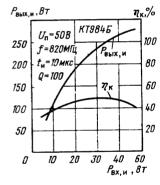
Импульсная выходная мощность на частоте $f=$	
$=820$ МГц при $U_n=50$ В, $t_n=10$ мкс, $Q=100$,	
<i>T</i> _к ≤+40 °C, не менёе:	
KT984A	75 В т
КТ 984Б	250 Вт
Коэффициент усиления по мощности на частоте f =	
=820 MFu mpu $I/=50$ B $t=10$ MKC. $Q=100$.	

КТ984А при $P_{\rm BMX}{=}75~{\rm Br}$	55,9*9* 47*10*
$T_{\rm K}=+40^{\circ}{\rm C}$: КТ984А при $P_{\rm BMX}{=}75$ Вт КТ984Б при $P_{\rm BMX}{=}250$ Вт	3550*60* % 3545*55* %
частоте при $U_{\rm K,9}{=}10$ В, $f{=}300$ МГц: КТ984А при $I_{\rm K}{=}2,5$ А	23*4*
КТ984А	5*6*8* A 15*18*22* A
сокой частоте при $U_{\rm KB}{=}10$ В, $f{=}5$ МГц: KT984A при $I_3{=}0.4$ A	2,5*5*20* пс 3*5*20* пс
Емкость коллекторного перехода при $U_{\rm KB}{=}50~{\rm B:}$ KT984 Λ	17*18*35* πΦ 50*55*80* πΦ
КТ984Б	30 mA 80 mA
КТ984А	15 мА 40 мА
изменениі фазы коэффициента отражения в пределах 0.360° при $U_{\rm KB} = 50$ В, $t_{\rm H} = 10$ мкс, $Q = 100$, $f = 820$ МГц, $T_{\rm h} = +40$ °C при кратковременном расседования (1.c), не более:	\`o= :
КТ984А при $P_{\text{вых}} = 75 \text{ Br}$	10* 3*
Предельные эксплуатационные данн	ые
Постоянное напряжение питания Постоянное напряжение коллектор — база	65 B
Импульсный ток коллектора: КТ984А	7 A
КТ984Б	16 A
$T_{\kappa} \leqslant +25^{\circ}\text{C}$: KT984A KT984F	1,4 Вт 4,7 Вт

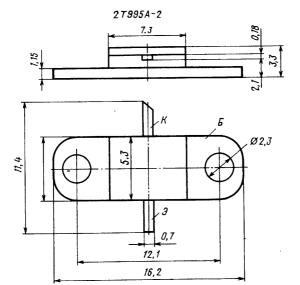

 $^{^{\}rm I}$ При $T_{\rm K}\!\!>\!+25\,^{\rm o}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения


$$P_{K, cp, Makc}, B_{T} = \frac{160 - T_{K}}{R_{T (n-K)}}$$

где $R_{T \text{ (п-к)}}$ определяется из графика.


Импульская рассенваемая мощность компектора при	
$t_{\rm u} = 10$ MKC, $Q = 100$:	15 Dm
τ _μ =10 μmc, τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	10 DI
КТ984Б	02,5 DT
мицимальная рабочая частота	400 М1Ц
Theremore non Heneyolla	+100 °C
Температура окружающей среды	$-45^{\circ}CI_{K} =$
1 Chillepary P	= +85 °C

Зависимости теплового сопротивления переход — корпус от длительности импульса


Зависимости импульсной выходной мощности и коэффициента полезного действия коллектора от входной мощности

олничести импульсной выходной мощности и коэффициента полезного действия коллектора от входной мощности

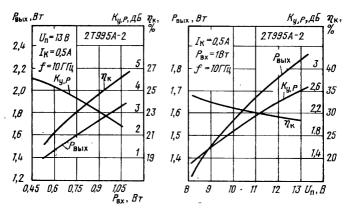
2T995A-2

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* генераторный. Предназначен для применения в усилителях и генераторах в диапазоне частот 2...10 ГГц в схеме ОБ при напряжении питания 14 В. Бескорпусный, в металлокерамическом кристаллодержателе, с гибкими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.

Электрические параметры

Выходная мощность на частоте f =10 ГГц при $U_{\rm n}$ ==13 В, $I_{\rm K}$ =0,5 А, $P_{\rm BX}$ =1 Вт	1,5,1,85*
	2,2* Вт
Фаза коэффициента передачи тока на частоте $f =$	0* 0 5* 10
$=1$ ГГц при $U_{KB}=3$ В, $I_{K}=0,3$ А	8*8,5*13 град
Обратный ток коллектора при $U_{KB} = 18$ В: $T_{K} = +25$ и -60 °C	0.002* 0.16*
$I_{\rm K}=+23$ M -00 C	2 мА
$T_{\rm K} = +125 {}^{\circ}{\rm C}$, не более	
Обратный ток эмиттера при $U_{35} = 1,5$ В:	5
$T_{ m K} = +25$ и $-60{}^{\circ}{ m C}$	0,065*0,1*
	1 мА
$T_{\rm K} = +125{}^{\circ}{ m C}$, не более	5 мА

Предельные эксплуатационные данные


Постоянное напряжение питания	14 B
Постоянное напряжение коллектор — база	
Постоянное напряжение база — эмиттер	1,5 B
Постоянный ток коллектора	0,6 A
Постоянная рассеиваемая мощность коллектора при	
$U_{KB}=7$ B, $T_{K}=-60+40$ °C	3 Вт

 $^{^{-1}}$ При $T_{\rm K}\!\!>\!+40\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{\rm K, \ Makc}, \ {\rm Bt} = {190 - T_{\rm K} \over 50} \ .$$

Средняя рассеиваемая мощность коллектора 2 в динамическом режиме при $T_{\rm k}\!=\!-60\!+\!25~^{\circ}{\rm C}$	5,7 Вт +190 °С
Тепловое сопротивление переход — корпус	29 °C/Вт
2 При $T_{\rm K} > +25^{\circ}{\rm C}$ $P_{\rm K,cp,Makc}$, ${\rm Br} = \frac{190-T_{\rm K}}{29}$.	

Расстояние места пайки выводов от кристаллодержателя 1 мм, температура пайки $+260\,^{\circ}\mathrm{C}$, время пайки не более 3 с. При пайке выводов на расстоянии 0,5 мм температура пайки не должна превышать $+150\,^{\circ}\mathrm{C}$.

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия от входной мощности Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения

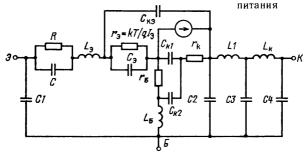
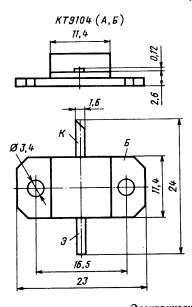
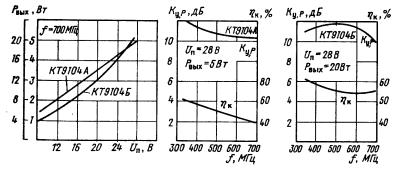



Схема замещения транзистора 2Т995А-2 в активном режиме:

С=180 пФ, $C_{\rm K3}$ =0,6 пФ, $C_{\rm I}$ =0,82 пФ, $C_{\rm 2}$ =0,45 пФ, $C_{\rm 3}$ =0,8...1,05 пФ, $C_{\rm 4}$ =0,55 пФ, $C_{\rm K1}$ =0,54 пФ ($U_{\rm K5}$ =10 B), $C_{\rm K2}$ =1,65 пФ ($U_{\rm K5}$ =10 B), $C_{\rm 5}$ =13,2 пФ ($U_{\rm K5}$ =0), в рабочем режиме 33 пФ, $L_{\rm 3}$ =0,55 нГн, $L_{\rm 6}$ =0,13 нГн, $L_{\rm 1}$ =0,25 нГн, $L_{\rm K}$ =0,45 нГн, R=1...2 Ом, $r_{\rm K}$ =0,8 Ом, $r_{\rm K}$ =0,2 Ом

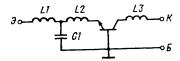
KT9104A, KT91045

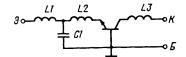

Транзисторы кремниевые эпитаксиально-планарные структуры *n-p-n* генераторные. Предназначены для применения в усилителях мощности и генераторах в схеме ОБ в диапазоне частот 350...700 МГц при напряжении питания 28 В. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 10 г.

Электрические параметры	. T
Выходная мощность на частоте f =700 МГц при $U_{\rm n}$ =28 В, $T_{\rm K}$ +40 °C, не менее:	·
КТ9104Б при P_{BX} = 0,625 Вт	5 Вт 20 Вт
Коэффициент усиления по мощности на частоте f =700 МГц при $U_{\rm n}$ =28 В, $T_{\rm k}$ = $+40^{\circ}$ С: KT9104A при $P_{\rm Bbx}$ =5 Вт	
Коэффициент полезного действия на частоте $f = -700 \text{ M} \Gamma_{\text{H}}$ при $U_{\text{H}} = 28 \text{ B}$, $T_{\text{K}} \leq +40 ^{\circ}\text{C}$:	
KT9104A при $P_{\text{вых}} = 5$ Вт	4046*50* % 5055*60* %
Модуль коэффициента передачи тока на высокой частоте при $U_{\rm K9}{=}10$ В, $f{=}300$ МГц: ${\rm KT9104A}$ при $I_{\rm K}{=}1$ А	23,2*4* 22,5*4*
Постоянная времени цепи обратной связи на вы-	
сокой частоте при $U_{\rm KB}{=}5$ В, $f{=}50$ МГц: KT9104A при $I_9{=}0,3$ А	6*10*20* пс 5,2*9*20* пс
Емкость коллекторного перехода при $U_{\rm KB}{=}28~{\rm B:}$ KT9104A	12*13*20* пФ 28*30*40* пФ
Обратный ток коллектора при $U_{\rm KB}{=}50~{\rm B},$ не более: KT9104A	10 мА 20 мА

Обратный ток эмиттера при $U_{\rm 3B}{=}4$ В, не более: КТ9104А	5 мА 10 мА
Предельные эксплуатационные данн	LIA
предельные эксплуатационные дани	DIC
Постоянное напряжение питания	29 B
Постоянное напряжение коллектор — база	
Постоянное напряжение эмиттер — база	
Постоянный ток коллектора:	7 0'
	1 F A
KT9104A	1,5 A
КТ9104Б	5 A
Средняя рассеиваемая мощность коллектора при	
$T_{\rm K} \leq +40^{\circ}{\rm C}$:	
	10 Вт
КТ9104Б	23 B _T
Температура р-п перехода	±175 °C
Тепловое сопротивление переход — корпус:	, 0
KT9104A	8 2 °C /Bm
КТ9104Б	3.1 °C/D
Тампаратура окружения поли	O, I C/DT
Температура окружающей среды	-45 C1 _K =
	$= +85 ^{\circ}\text{C}$

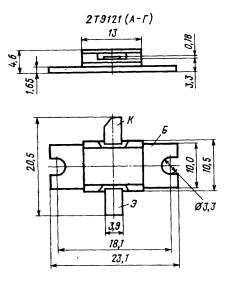
 $^{^{\}rm I}$ При $T_{\rm K}{>}{+}40\,^{\rm o}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения


$$P_{K, cp, makc}, B_{T} = \frac{175 - T_{K}}{R_{T (\pi - \kappa)}}$$


Зависимости выходной мощности от напряжения питания

Зависимости коэффициента усиления и коэффициента полезного действия коллектора от частоты

Зависимости коэффициента усиления и коэффициента полезного действия коллектора от частоты



Принципиальная электрическая схема транзистора KT9104A: $LI=2\pm0.2$ вГн. $L2=1.4\pm0.14$ вГн, $L3=1.5\pm0.15$ вГн, $CI=50\pm5$ вФ

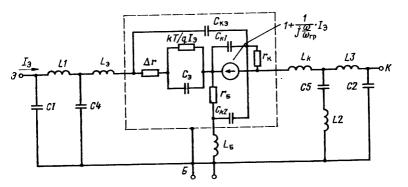
Принципиальная электрическая схема транзистора КТ9104Б: *L*1=1.7±0.2 нГн. *L*2=0.65±0.06 нГн, *L*3=1.5±0.15 нГн, *C*1=125±5 пФ

2T9121A, 2T9121B, 2T9121B, 2T9121F

Транзисторы кремэпитаксиальнониевые планарные структуры n-p-n генераторные. Предназначены для применения в широкополосных импульсных усилителях и генераторах в диапазоне частот 2,3,..2,7. ГГц в схеме ОБ при напряжении питания 35 В. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Транзисторы содержат внутренние согласующие цепи. Тип прибора указывается на корпусе. Масса транзистора не более 5 г.

Электрические параметры

Импульсная выходная мощность при $t_{\mu} = 100$ мкс, Q = 10, $T_{\rm K} \le +25$ °С, не менее: при $U_n = 40$ В, $\Delta f = 2,3...2,7$ ГГц: 2Т9121A при $P_{\rm BX} = 8.7$ Вт. 35 B_T 2Т9121Б при $P_{\text{BX}} = 4,4$ Вт . 2Т9121В при $P_{\text{BX}} = 1$ Вт . . 17,5 Br 4 **В**т 2Т9121Г при $P_{\text{вх}} = 12,5 \; \text{Вт}$. 50 Вт при $U_{\rm n} = 32$ В, f = 2.7 ГГц: 2Т9121А при $P_{\rm BX} = 8.7$ Вт. 25 B_T 2Т9121Б при $P_{\rm BX}^{\rm BA}$ =4,4 Вт . 2Т9121В при $P_{\rm BX}$ =1 Вт . 17,5 Br 4 Вт 2Т9121 Γ при $P_{\rm BX}^{\rm ph} = 12,5$ Вт 35 BT Коэффициент усиления по мощности при


=8.7 Вт для 2Т9121А, $P_{\text{вх}}=4.4$ Вт для 2Т9121Б,

$P_{\text{вx}} = 1$ Вт для $t_{\text{H}} = 100$ мкс, 0 $U_{\text{m}} = 40$ В, $U_{\text{m}} = 32$ В Коэффициент $P_{\text{вx}} = 8,7$ Вт дл $P_{\text{Bx}} = 1$ Вт для $t_{\text{H}} = 100$ мкс, 0 $U_{\text{m}} = 40$ В, $U_{\text{m}} = 32$ В 0 Оболений ток.	2Т9 Q=10 Δf= , f=2 поле ия 2Т 2Т9 Q=10	121В), T_{κ} 2,3 2,7 І зног 9121 121В), T_{κ}	$P_{\text{вх}}$ \neq $+$ \geq $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$	=12,5°C СТЦ . йствия =12,5°C	Б Вт , не н ко. 4 Вт 5 Вт , не	для 2 менее ллекто для 2 для 2 менее	T9121 : pa п T9121 T9121	Г, ри Б, Г,	6 дБ 4,5 дБ
$U_{\rm n} = 40 \rm B,$	$\Delta f =$	2,3	2,7 I	Υц.					30 %
U_{n} =32 В Обратный ток	, /=	Z,/ ektoi	llЦ	 u II		 DR 116	 . бол		25 %
$_{\text{при }}T_{\text{K}}=$	+ 25 °	C	ya ni	и окт	542	2 Б, не	: OOM	æ.	
2T912	ΙĀ	· .							15 мА
2T912	ЯБ.								7,5 MA
2T912	1B .								2,5 MA
2T912	1Γ.		-60°	<u>.</u> .					22,5 мА
при $T_{\kappa} = -$		и —	-60°	C:					
2T912		٠							22 мА
2T912 2T912								•	II MA
21312 2T012	1D .							•	3,7 мА 35 мА
Обратный то	к ко	ллек	 тор -		rren	пои	Ilua		JJ MA
=40 В, не бол	iee:		·op	314111	ПСР	npn	O K 3		
при $T_{\kappa} = -$		C:							
- 2 T912	1A .								30 мА
2T912									15 мА
27912	IB.	•							5 мА
21912	11 .			ċ. ·				•	45 MA
21912 $2T912$ $T_{K} = 2T912$	† 120 TA	и	-00	C:		-	•		45 мА
2T912	15	•						٠	23 MA
2 T 912						· ·		•	7.5 MA
									70 MA
Обратный ток	ЭМИ'	гтера	а прі	и U_{25}	=3	В, не	боле	e:	
при T_{κ} — -	+25°	'C:		-					
2T912			٠.						20 мА
2T912									10 мА
2T912 2T912	IB.	٠		• .	•				3,5 MA
	11 . 上195		-60 °	<i>;</i> :				٠	30 мА
2T912	1 A	F1 -							30 мА
2T912					: :				15 мА
2T912	1B.								5,2 MA
2T912	1Γ.								45 MA
	Пр	едел	ьные	эксп.	пуата	ционн	ые да	аниь	ae
Постоянное на Постоянное на Импульсный т	иряя Ккапі	кение кение	е кол Эми тора	лектој гтер —	о — б - баз — 10	база. а Юмкс	 0=	10:	42 B 3 B
2T9121A									9,2 A
2Т9121Б									4,6 A
2T9121B									1,15 A
2Т9121Г									13 A
Импульсная = 100 мкс, Q=	pacce =10,	еивае Т _к =	60 60	мош :+ и	(ност 25 °С	ь¹ пр ::	и <i>t</i> _и	=	

2T9121A															92 Вт
2Т9121Б															
2T9121B	•	•	•	•	٠	•	٠	٠	٠	•		-	-		11.5 Br
2191215	٠	•	٠	٠	٠	•	٠	•	•	•	•	٠		•	130 Br
2Τ9121Γ		-	-	-	٠	•		٠	٠	٠	٠	•	•	•	100 DI
Температура	p-n	п	epe:	ход	ιa		•		•	٠	٠	٠	٠		+100 C
Температура	oKp	γж	аю	ще	Й	cpe	ды								—00 C1 _K —
		-													— +125°C

 $^{^{1}}$ При $T_{\rm K} \leqslant +25\,^{\circ}{
m C}$ импульсная рассеиваемая мощность определяется из выражения

$$P_{H, MAKC}, B_T = \frac{160}{R_{T, H} (n-\kappa)};$$

Эквивалентная схема замещения транзистора 2Т9121 (А—Г) в активном режиме:

2Т9121A: $L_9 = 0.05$ нГн, $L_6 = 0.02$ нГн, $L_{\kappa} = 0.1$ нГн, $C_4 = 40$ пФ, $C_5 = 150$ пФ, $C_{\kappa 2} = 14$ пФ, $C_{\kappa 1} = 4$ пФ, $C_9 = 200$ пФ, $C_{\kappa 3} = 2$ пФ, $\Delta r = 0.1$ Ом, $r_6 = 0.25$ Ом, $r_{\kappa} = 0.05$ Ом, LI = 0.25 нГн,

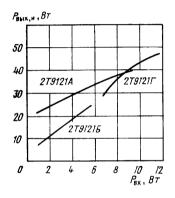
 $\begin{array}{c} c_{K1} = _{7} \text{ mp. } c_{9} = _{210} \text{ mp. } c_{K9} = _{2} \text{ mp. } \text{ mp. } c_{1} \text{ cm. } r_{6} = _{012} \text{ cm. } r_{K} = _{010} \text{ cm. } E_{1} = _{010} \text{ mp. } E_{2} = _{010} \text{ mp. } E$

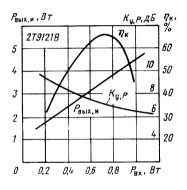
2Т9121 Г: L_{3} =0,15 нГн, L_{6} =0,015 нГн, L_{K} =0,07 нГн, C4=60 пФ, C5=200 пФ, C_{x2} =21 пФ, C_{x1} =6 пФ, C_{5} =300 пФ, C_{x2} =3 пФ, Δr =0,017 Ом, r_{6} =0,17 Ом, r_{K} =0,03 Ом, LI=0,17 нГн, C1 = 3.5 пФ, L2 = 0.13 нГн, C2 = 4 пФ, L3 = 0.13 нГн

Значення элементов эквивалентной

Тип	<i>L</i> ₃ ,	<i>L</i> ₆ ,	<i>L</i> _к ,	С4,	<i>С5</i> ,	С _{к2} ,	С _{кі} ,
транзистора	нГн	нГн	нГн	пФ	пФ	пФ	пФ
2T9121A	0,05	0,02	0,1	40	150	14	4
2T9121B	0,1	0,05	0,2	20	100	7	2
2T9121B	0,3	0,15	0,6	7	50	2,5	0,7
2T9121T	0,15	0,015	0,07	60	200	21	6

при
$$T_{\rm K} > +25\,{\rm ^{\circ}C}$$
 $P_{\rm H,\;Makc},\;{\rm BT} = \frac{185-T_{\rm K}}{R_{T,\;{\rm H}\;(\Pi\;-{\rm K})}},$

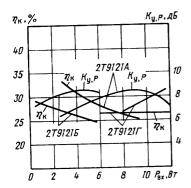

где
$$R_{T,\,_{\rm H}\,_{\rm (II-K)}} = \frac{3}{Q} + 0.19 \, \left(1 - \, \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{_{\rm H}}}$$
 для 2Т9121А;


$$R_{T, \text{ и (n-к)}} = \frac{6}{Q} + 0.38 \left(1 - \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{\text{n}}}$$
 для 2Т9121Б;

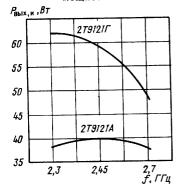
$$R_{T, \text{ H (п- K)}} = \frac{24}{Q} + 1.52 \left(1 - \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{\text{H}}}$$
 для 2Т9121В;

$$R_{T, \text{ и (n- к)}} = \frac{3}{Q} + 0.128 \left(1 - \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{\text{в}}}$$
 для 2Т9121Г.

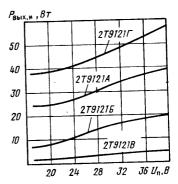
Формулы справедливы при $P_{\text{и, макс}} \leqslant 165$ Вт для 2Т9121А; при $P_{\text{и, макс}} \leqslant 80$ Вт для 2Т9121Б; при $P_{\text{и, макс}} \leqslant 20$ Вт для 2Т9121В; при $P_{\text{и, макс}} \leqslant 220$ Вт для 2Т9121Г.

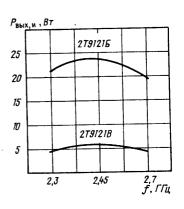


Зависимости импульсной выходной мощности от входной.

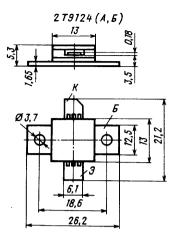

Зависимости импульсной выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мошности

схемы замещения транзисторов


С ₃ ,	С _ю ,	<u>А</u> г,	r _g ,	r _к ,	<i>L1</i> ,	<i>С1</i> ,	<i>L2</i> ,	С2,	<i>L3</i> ,
пФ	пФ	Ом	Ом	Ом	нГн	пФ	нГн	пФ	нГн
200	2	0,1	0,25	0,05	0,25	3,5	0,2	4	0,2
100	1	0,05	0,5	0,1	0,5	3,5	0,4	4	0,4
30	0,3	0,15	1,5	0,3	0,7	1	0,6	1,5	1,2
300	3	0,017	0,17	0,03	0,17	3,5	0,13	4	0,13


Зависимости коэффициента усиления и коэффициента полезного действия коллектора от входной мошности

Зависимости импульсной выходной мошности от частоты


Зависимости импульсной выходной мощности от напряжения питания

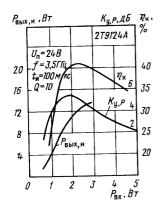
Зависимости импульсной выходной мощности от частоты

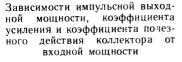
2T9124A, 2T91245

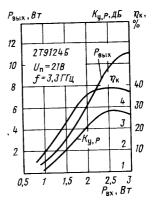
Транзисторы кремниевые эпитаксиально-планарные структуры *n-p-n* генераторные. Предназначены для применения в широкополосных усилителях и генераторах импульсного (2Т9124A) и непрерывного (2Т9124Б) режимов работы в диапазоне частот 3,1...3,5 ГГц в схеме ОБ при напряжении питания 24 В в импульсном режиме и 21 В в непрерывном. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Транзисторы содержат внутренние согласующие цепи. Тип прибора указывается на корпусе. Масса транзистора не более 5,5 г.

Импуль сная выходная мощность при $t_{\rm H} = 100$ мкс,	
$Q=10$, $T_{\text{\tiny K}}=+25^{\circ}\text{C}$, $P_{\text{\tiny BX}}=3.3$ Вт для 2Т9124А, не	
менее:	
	10 Вт
$U_{\rm n}=20~{\rm B},~f=3,3~\Gamma\Gamma{\rm u}$	8 Вт
Выходная мощность $P_{\rm BX} = 2,5$ Вт, $T_{\rm K} = +25^{\circ}{\rm C}$ для	
2Т9124Б, не менее:	
$U_{\Pi} = 21 \text{ B}, \Delta f = 3.13,5 \Gamma \Gamma \mu$	
$U_{\rm n} = 20$ B, $f = 3.3$ $\Gamma \Gamma \mu$	7 Вт
- Коэффи циент усиления по мощности при T_{κ} =	
= +25 °C, не менее:	
2Т9124A при $t_{\rm H} = 100$ мкс, $Q = 10$, $P_{\rm BX} = 3.3$ Вт:	
$U_n=24 \text{ B}, \Delta f=3,13,5 \Gamma \Gamma \mu \dots \dots$	3 дБ
$U_{\rm n}^{"}=20$ B, $f=3,3$ $\Gamma\Gamma\mu$	
2Т9124Б при P _{вх} =2,5 Вт:	,
$U_{\rm g}=21$ В, $\Delta f=3,13,5$ ГГц	32 дБ
$U_{\rm n}=20$ B, $f=3,3$, $\Gamma\Gamma\mu$	28 дБ
Коэффициент полезного действия коллектора при	2,0 Д
T_{κ} = $+25$ °C, не менее:	
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2T9124A при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm BX}=3,3$ Вт:	30 %
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2Т9124А при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm BX}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц	30 %
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2Т9124А при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm BX}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц	, ,
$T_{\mathrm{K}}=+25^{\circ}\mathrm{C}$, не менее: 2Т9124А при $t_{\mathrm{H}}=100$ мкс, $Q=10,\ P_{\mathrm{BX}}=3,3$ Вт: $U_{\mathrm{\Pi}}=24$ В, $\Delta f=3,13,5$ ГГц	30 %
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2Т9124А при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm BX}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 %
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2Т9124А при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm BX}=3,3$ Вт: $U_{\rm n}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 %
$T_{\mathrm{K}}=+25^{\circ}\mathrm{C}$, не менее: 2Т9124А при $t_{\mathrm{H}}=100$ мкс, $Q=10,\ P_{\mathrm{BX}}=3,3$ Вт: $U_{\mathrm{H}}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 %
$T_{\mathrm{K}}=+25^{\circ}\mathrm{C}$, не менее: 2Т9124А при $t_{\mathrm{H}}=100$ мкс, $Q=10,\ P_{\mathrm{Bx}}=3,3$ Вт: $U_{\mathrm{H}}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 % 20 MA
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2T9124A при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm BX}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 % 20 MA 40 MA
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2T9124A при $t_{\rm H}=100$ мкс, $Q=10,\ P_{\rm Bx}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц. $U_{\rm H}=20$ В, $f=3,3$ ГГц. 2T9124Б при $P_{\rm Bx}=2,5$ Вт: $U_{\rm H}=21$ В, $\Delta f=3,13,5$ ГГц. $U_{\rm H}=20$ В, $f=3,3$ ГГц	30 % 35 % 35 % 20 MA 40 MA
$T_{\kappa}=+25^{\circ}\mathrm{C}$, не менее: 2Т9124А при $t_{\mathrm{H}}=100$ мкс, $Q=10,\ P_{\mathrm{Bx}}=3,3$ Вт: $U_{\mathrm{\Pi}}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 % 20 mA 40 mA
$T_{\mathbf{K}} = +25^{\circ}\mathrm{C}$, не менее: 2Т9124А при $t_{\mathbf{H}} = 100$ мкс, $Q = 10, P_{\mathrm{BX}} = 3,3$ Вт: $U_{\mathrm{n}} = 24$ В, $\Delta f = 3,13,5$ ГГц	30 % 35 % 35 % 20 MA 40 MA
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2T9124A при $t_{\rm H}=100$ мкс, $Q=10$, $P_{\rm BX}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 % 20 mA 40 mA 30 mA
$T_{\mathbf{K}}=+25^{\circ}\mathrm{C}$, не менее: 2T9124A при $t_{\mathbf{H}}=100$ мкс, $Q=10,\ P_{\mathrm{BX}}=3,3$ Вт: $U_{\mathrm{H}}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 % 20 mA 40 mA 40 mA 10 mA
$T_{\rm K}=+25^{\circ}{\rm C}$, не менее: 2T9124A при $t_{\rm H}=100$ мкс, $Q=10$, $P_{\rm BX}=3,3$ Вт: $U_{\rm H}=24$ В, $\Delta f=3,13,5$ ГГц	30 % 35 % 35 % 20 MA 40 MA 40 MA 10 MA

Предельные эксплуатационные данные

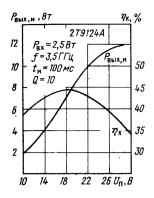

Постоянное напряжение коллектор — база при	
$T_{\rm w} = +25 + 125 {}^{\circ}{\rm C}$	30 B
Постоянное напряжение эмиттер — база	1,5 B
Постоянный ток коллектора для 2Т9124Б	1,5 A
Импульсный ток коллектора при $t_{\rm H}\!=\!250$ мкс, $Q\!=\!$	
—10 лля 2T9124A	2 A
Импульсная рассеиваемая мощность коллектора ² при	
$t_{\rm H} = 100$ мкс. $Q = 10$. $T_{\rm K} = -60$ $+65$ °C для 219124 А	23,5 Вт.
Средняя рассеиваемая мощность коллектора в ди-	
намическом режиме ³ при $T_{\kappa} = -60 + 25$ °C для	01 # D
2Т9124Б	21,5 Вт
Температура p - n перехода	+200 °C
Температура р-п перехода в импульсном режиме	+175 °C
Тепловое сопротивление переход — корпус	8°C/Вт
Тепловое сопротивление переход — корпус в импуль-	4.C.o.C./D
сном режиме	4,6 °C/BT
сном режиме	$-60^{\circ}CI_{\kappa} =$
	$= +125 {}^{\circ}\text{C}$

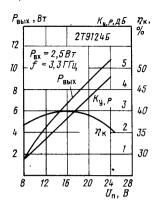

 $^{^{1}}$ При изменении $T_{\rm K}$ от $\,+25\,$ до $\,-60\,^{\rm o}{\rm C}\,$ $U_{\rm KB}$ снижается линейно до $25\,$ В.


$$P_{K, \text{ M, Makc}}, \text{BT} = \frac{175 - T_{\text{K}}}{R_{T, \text{ M} (\Pi - \text{K})}}.$$

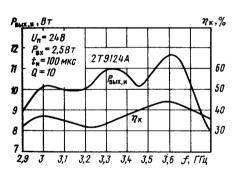
 3 В диапазоне температур $T_{\rm k}\!=\!+\!\bar{2}5...\!+\!125\,^{\rm o}{\rm C}$ $P_{\rm K,\;cp,\;макс}$ рассчитывается по формуле

$$P_{K, cp, Makc}, B_T = \frac{200 - T_K}{R_{T (n-K)}}$$
.

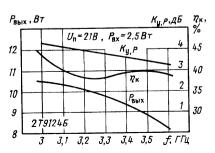




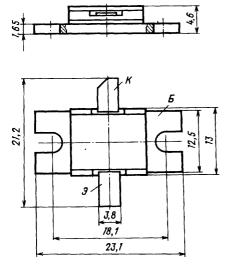
Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мощности


 $^{^2}$ В диапазоне температур $T_{\rm K}\!=+65...\!+\!125\,^{\rm o}{\rm C}$ $P_{\rm K,~H,~Makc}$ рассчитывается по формуле


Зависимости импульсной выходной мощности и коэффициента полезного действия коллектора от напряжения питания



Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания


Зависимости импульсной выходной мощности и коэффициента полезного действия коллектора от частоты

2Т9127А, 2Т9127Б

2T9127 (A, 5)

Транзисторы кремниэпитаксиально-планарные структуры n-p-n генераторные. Предназначены для применения в импульсных усилителях мощности и генераторах в полосе частот 1,025... 1,15 ГГц в схеме ОБ при напряжении питания 50 В. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Транзисторы содержат согласующие цепи по входу прибора выходу. Тип указывается на корпусе. Масса транзистора не более 5 г.

Импульсиая выходная мощность при $t_{\rm H} = 10$ мкс,	
Q = 100, не менее:	
в диапазоне частот $\Delta f = 1,0251,15$ ГГц при	
$U_n = 50 \text{ B}$:	
2 Т9127A при $P_{\text{Bx}} = 150 \text{ Br} \dots \dots$	550 BT
2Т9127Б при Р _{вх} =60 Вт	250 Вт
на частоте $f = 1,15$ ГГц при $U_n = 40$ В:	400 B
$2T9127A$ при $P_{\text{BX}} = 150 \text{ Br}$	
2 Т9127Б при $P_{\text{вx}} = 60 \text{ Bt}$	180 BT
Коэффициент усиления по мощности при $t_{\mu} = 10$ мкс,	
Q=100, ие менее:	
в диапазоне частот $\Delta f = 1,0251,15$ ГГц при $U_n = 50$ В:	
2 Т9127A при $P_{\text{вых}} = 550$ Вт	5,64 дБ
2Т9127Б при $P_{\text{вх}} = 250 \text{ Br}$	6,2 дБ
на частоте $f=1,15$ ГГц при $U_n=40$ В:	
2Т912ТА при Р _{вых} =400 Вт	4,2 дБ
2 Т91 2 7Б при $P_{\text{вых}} = 180$ Вт	4,7 дБ
Коэффициент полезного действия при $t_{\rm H} = 10$ мкс,	
Q = 100, ие менее:	
в диапазоне частот $\Delta f = 1,0251,15$ ГГц при	
$U_{\rm n} = 50 \text{B}$:	
2 Т9127А при $P_{\text{вых}} = 550 \text{ Br} \dots \dots \dots$	
2 Т9127Б при $P_{\text{вых}} = 250 \text{ B} \text{т} \dots \dots$	35 %
на частоте $f = 1,15$ ГГц при $U_n = 40$ В:	00.07
2Т9127А при $P_{\text{вых}} = 400 \text{ Br}$	
2 Т9127А при $P_{\text{вых}} = 180 \text{ Br}$	30 %

Обратный ток коллектора при $U_{{ m KB}}{=}65~{ m B},$ не бо-	
лее: при $T_{\kappa} = +25^{\circ}\text{C}:$ 2T9127A	70 мА
2Т9127Б	35 MA
при $T_{\kappa} = +125$ и —60 °C: 2T9127A	105 MA
2Т9127Б	52 мА
ие более:	
2T9127A	80 мА
2Т9127Б	40 мА
Обратный ток эмиттера при $U_{\rm ЭБ}\!=\!3,5$ В, ие более:	
при $T_{\kappa} = +25 ^{\circ}\text{C}$:	
2T9127A	
2Т9127Б	35 мА
при $T_{\kappa} = +125$ и -60 °C:	
2T9127A	105 мА
2Т9127Б	52 мА
Предельные эксплуатационные данни	чe
Постоянное напряжение коллектор — база	
Постоянное напряжение эмиттер — база	3,5 B
Импульсный ток коллектора 1 при $t_{\rm H} = 10$ мкс, $Q = 100$:	
2T9127A	38 A
2T9 127F	19 A
Импульсная рассенваемая мощность коллектора ²	
при $t_{\rm H} = 10$ мкс, $Q = 100$, $T_{\rm K} \leqslant +85$ °C:	
2T9127A	1151 Вт
2Т9127Б	524 BT
Темп ература <i>p-п</i> перехода	+200 °C
Температура окружающей среды	$-60^{\circ}C_{-}T_{*}=$
remneparypa onpymanomen epedus	$= +125 ^{\circ}\text{C}$

 $I_{K, H, MAKC}$, $A = \frac{P_{K, H, MAKC}(Q, t_{M})}{30,3}$ для 2Т9127А,

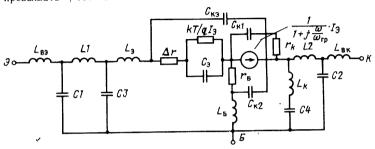
$$I_{\mathrm{K, \, H, \, Makc}}, \mathrm{A} = \frac{P_{\mathrm{K, \, H, \, Makc}}\left(Q, \, t_{\mathrm{H}}\right)}{27.6}$$
 для 2Т9127Б.

 2 При $T_{\rm K}\!<\!+85\,^{\rm o}{\rm C}$ импульсная рассеиваемая мощность коллек **тора** определяется из выражения

$$P_{K, H, Makc}, BT = \frac{115}{R_{T (\Pi - K)}},$$

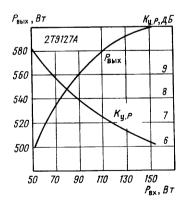
при
$$T_{\kappa} > +85 \, {}^{\circ}\text{C} \, P_{K, \, \text{M, MAKC}}, \, B_{\text{T}} = \frac{200 - T_{\kappa}}{R_{T, \, (n-\kappa)}}$$

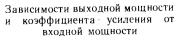
тде

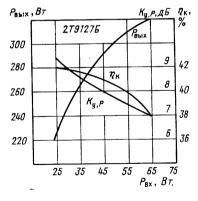

$$R_{T \text{ (п-к)}} = \frac{1.2}{Q} + 0.03 \left(1 - \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{\text{N}}}$$
 для 2Т9127А,

$$R_{T \text{ (п-к)}} = \frac{2.4}{Q} + 0.068 \left(1 - \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{\text{к}}}$$
 для 2Т9127Б.

Расстояние от корпуса до места лужения и пайки не менее 3 мм,

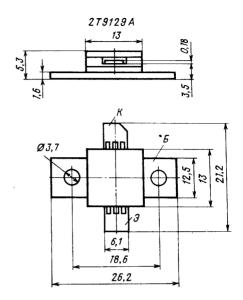

температура припоя +260 °C, время пайки не более 3 с.


Расстояние от корпуса до начала изгиба вывода не менее 3 мм. При монтаже транзисторов в широкополосные линии разрешается обрезать полосковые выводы на расстоянии не менее 2 мм от корпуса, а также формовать выводы на расстоянии не менее 1 мм от корпуса. При этом усиление не должно передаваться на место присоединения вывода с корпусом. Присоединение выводов рекомендуется осуществлять методом сварки или пайки с применением мер по устранению возможности возникновения механических напряжений между выводом и корпусом транзистора. Температура корпуса транзистора при этом не должна превышать $+150\,^{\circ}\mathrm{C}$.



Эквивалентная схема замещения транзисторов 2T9127 (A, Б) в активном режиме:

 $L_{\mathrm{B9}} \!\!=\! 0.7 \, \mathrm{H} \Gamma \mathrm{H}, \, L1 \!\!=\! 0.3 \, \mathrm{H} \Gamma \mathrm{H}, \, L_{\mathrm{9}} \!\!=\! 0.5 \, \mathrm{H} \Gamma \mathrm{H}, \, L_{\mathrm{BK}} \!\!=\! 0.7 \, \mathrm{H} \Gamma \mathrm{H}, \, C1 \!\!=\! C2 \!\!=\! 4 \, \mathrm{n} \Phi, \, C3 \!\!=\! 240 \, \mathrm{n} \Phi, \, C4 \!\!=\! 75 \, \mathrm{n} \Phi, \, \Delta r \!\!=\! 0.005 \, \mathrm{OM}, \, L6 \!\!=\! 0.01 \, \, \mathrm{H} \Gamma \mathrm{H}, \, C_{\mathrm{S}} \!\!=\! 0.01 \, \, \mathrm{H} \Gamma \mathrm{H}, \, C_{\mathrm{S}} \!\!=\! 0.01 \, \, \mathrm{H} \Gamma \mathrm{H}, \, C_{\mathrm{S}} \!\!=\! 0.01 \, \, \mathrm{H} \Gamma \mathrm{H}, \, C_{\mathrm{S}} \!\!=\! 0.01 \, \, \mathrm{H} \Gamma \mathrm{H}, \, C_{\mathrm{S}} \!\!=\! 0.01 \, \, \mathrm{H} \Gamma \mathrm{H}, \, C_{\mathrm{S}} \!\!=\! 0.01 \, \, \mathrm{OM}, \, C_{\mathrm{K}_{\mathrm{S}}} \!\!=\! 0.01 \,$



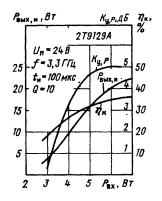
Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мощности

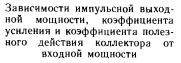
2T9129A

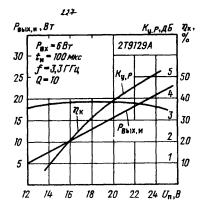
Транзистор кремниеэпитаксиально-планарный структуры *n-p-n* усилительный. Предназначен для применения в широкополосных импульсных усилителях мощности в диапазоне частот 3.1... 3.5 ГГц в схеме ОБ при напряжении питания 24 В. Транзистор содержит внутренние цепи согласования. Выпускается в металлокерамическом корпусе с гибкими выводами. прибора указывается на корпусе. Масса транзистора не более 5,5 г.

Импульсная выходная мощность при $P_{\rm BX}\!=\!7$ Вт, $t_{\rm M}\!=\!100$ мкс, $Q\!=\!10,~T_{\rm K}\!=\!+25^{\circ}{\rm C},~$ не менее: на частотах $f\!=\!3,1;~3,3;~3,5$ $\Gamma\Gamma{\rm L}$ при $U_{\rm L}\!=\!$	
=24 B	20 Вт
на частоте $f = 3,3$ ГГц при $U_n = 20$ В	16 Вт
Коэффициент усиления по мощности при $P_{\text{вx}} = 7 \text{ BT}$,	
$t_{\rm H} = 10$ MKC, $Q = 10$, $T_{\rm K} = +25$ °C, He MeHee:	
на частотах $f=3,1$; 3,3; 3,5 ГГц при $U_n=24$ В	4,5 дБ
на частоте $f = 3,3$ ГГц при $U_n = 20$ В	3,3 дБ
Коэффициент полезного действия при $P_{\rm Bx} = 7$ Вт,	
$t_{\rm M} = 100$ MKC, $Q = 10$, $T_{\rm K} = +25$ °C, He MeHee:	00.07
на частотах $f = 3.1$; 3,3; 3,5 ГГц при $U_n = 24$ В	30 %
на частоте $f = 3,3$ ГГц при $U_n = 20$ В	30 %
Обратный ток коллектора при $U_{\rm KB} = 30$ В, не бо-	
лее:	20 11 1
$T_{\kappa} = +25 ^{\circ}\text{C} \cdot \dots \cdot $	30 MA
$T_{\kappa} = +125 \text{ M} -60 \text{ °C} \dots \dots \dots \dots \dots$	60 мА
Обратный ток коллектор—эмиттер при $U_{K\ni K} = -24$ В из болзе	50 мА
=24 В, не более	JU MA
$\dot{T} = 1.95$ °С	10 мА
$T_{\kappa} = +25 ^{\circ}\text{C}$	
1K-120 n 00 C	ZU MA

Предельные эксплуатационные данные

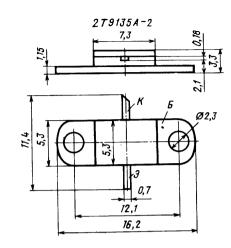

Постоянное напряжение коллектор — база при	
$T_{\kappa} = +25+125 ^{\circ}\text{C}$	30 B
Постоянное напряжение эмиттер — база	1,5 B
Импульсный ток коллектора при $t_{\rm H} = 100$ мкс,	
Q=10	4 A
Импульсный ток базы при $t_{\rm H}{=}100$ мкс, $Q{=}10$	0,35 A
Импульсная рассеиваемая мощность коллектора ² при	
$t_{\rm H} = 100$ MKC, $Q = 10$, $T_{\rm K} = -60 + 65$ °C	47 Bτ
Температура <i>p-n</i> перехода	+175 °C
Тепловое сопротивление переход — корпус	2,3 °C/Вт
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\kappa} =$
	$= +125 {}^{\circ}\text{C}$


 $^{^{1}}$ При изменении T_{κ} от +25 до -60 °C $U_{\rm KB}$ снижается линейно до 25 В.


 2 При $T_{\rm k}\!>\!+65\,^{\circ}{\rm C}$ импульсная рассеиваемая мощность коллектора определяется из выраження

$$P_{K, H, Make}, BT = \frac{175 - T_{K}}{2.3}.$$

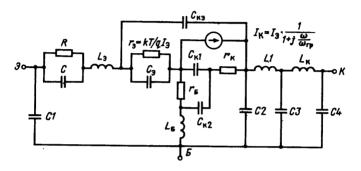
Расстояние от корпуса до места лужения и пайки выводов не менее 3 мм, температура пайки $+260\,^{\circ}\mathrm{C}$, время пайки не более 3 с. Допускается пайка выводов на расстоянии не менее 2 мм от корпуса при температуре не свыше $+150\,^{\circ}\mathrm{C}$ в течение не более 3 с.



Зависимости импульсной выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания

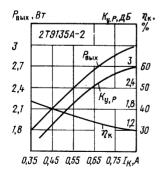
2TQ135A-2

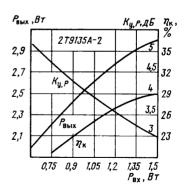
Транзистор кремниеэпитаксиально-плавый нарный структуры n-p-n генераторный. Предназначен для применения в усилителях и генераторах в лиапазоне частот 10 ГГц в схеме ОБ при напряжении питания 14 В в герметизированной аппаратуре. Выпускается в металлокерамическом кри-Ťип сталлодержателе. прибора указывается на кристаллодержателе. Macса транзистора не более 1 r.



Выходная мощность на частоте $f=10$ ГГц при $U_{\rm n}=12$ В, $I_{\rm K}=0.85$ А, $P_{\rm BX}=1.5$ Вт, $T_{\rm K}=+25^{\circ}{\rm C}$, не менее	1 мА
Предельные эксплуатационные данн	ые
Постоянное напряжение коллектор — база	15 B 1,2 B 0,95 A 8,7 BT 3,4 BT +190 °C
мическом режиме	19°C/Вт

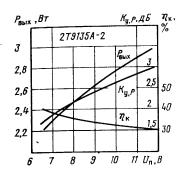
$$P_{K, cp, make}, B_T = \frac{190 - T_k}{19}.$$

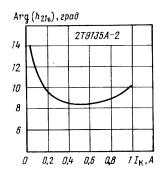

 2 При $T_{\rm K}\!>+57~{\rm ^oC}$ постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{K, \text{ Make}}, B_T = \frac{190 - T_K}{39}.$$

Эквивалентная схема замещения транзистора 2T9135A-2 в активном режиме:

 $C\!=\!240$ пф, $C_{_{\rm K3}}\!=\!0.8$ пф, $CI\!=\!0.84$ пф, $C2\!=\!0.7$ пф, $C3\!=\!1$ пф, $C4\!=\!0.6$ пф, $C_{_{\rm K1}}\!=\!0.72$ пф, $C_{_{\rm K2}}\!=\!2.2$ пф, $C_{_{\rm g}}\!=\!17.6$ пф при $U_{\rm B3}\!=\!0.$ $C_{_{\rm g}}\!=\!40$ пф при $U_{\rm B3}\!=\!1.2$ В, $L_{_{\rm g}}\!=\!0.2$ нГн, $L_{_{\rm G}}\!=\!0.1$ нГн, $L_{_{\rm H}}\!=\!0.15$ нГн, $R\!=\!1...2$ Ом, $r_{_{\rm G}}\!=\!0.5$ Ом, $r_{_{\rm K}}\!=\!0.2$ Ом




Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от тока коллектора

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мощности

 $^{^1}$ При $T_{\rm K} > +25\,^{\rm o}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия от напряжения питания

Зависимость фазы коэффициента передачи тока в схеме ОБ от тока коллектора

2T9137A

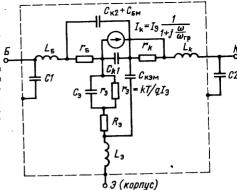
Транзистор кремнисвый эпитаксиально-планарный структуры *n-p-n* усилительный. Предназначен для применения в линейных усилителях в схеме ОЭ на частотах до 2,3 ГГц. Выпускается в металлокерамическом корпусе с полосковыми выводами. Транзистор маркируется условным обозначением — буквой «Р». Тип прибора указывается в этикетке. Масса транзистора не более 3 г.

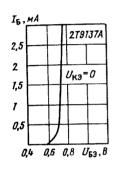
Электрические параметры

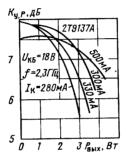
Выходная мощность на частоте f =2,3 ГГц при U_{KB} =18 В, I_{K} =380 мА, не менее медианное значение Коэффициент усиления по мощности на частоте f =2,3 ГГц при U_{KB} =18 В, I_{K} =380 А . Коэффициент полезного действия на частоте f =2,3 ГГц при U_{KB} =18 В, I_{K} =380 мА, не менее . Граничная частота коэффициента передачи тока в схеме ОЭ при U_{KB} =10 В, I_{K} =300 мА	2,5 Вт 5,56,9*7,7* дБ 30,7 % 2,74,4*5* ГГц 4*4,6*5,5 пФ 20*30*45 пФ
Предельные эксплуатационные данные	
Постоянное напряжение коллектор — эмиттер при $R_{69}{=}100$ Ом	3,5 B 550 mA 9 BT +160 °C 12,2 °C/BT

 2 При $T_{
m k}>+50\,^{\circ}{
m C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ Marc}}, B_{T} = \frac{160 - T_{K}}{12.2}.$$

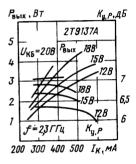

Расстояние от корпуса до места лужения и пайки не менее 1,5 мм, температура припоя $\pm 260\,^{\circ}$ С, время пайки не более 3 с. Расстояние от корпуса до начала изгиба вывода не менее 3 мм. При монтаже транзистора в микрополосковые линии или подобные устройства разрешается обрезать полосковые выводы на расстоянии не менее 1,5 мм от корпуса, а также формовать выводы на расстоянии не менее 1 мм от корпуса. При этом усилие не должно передаваться на место соединения вывода с кристаллом.

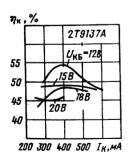

Не рекомендуется работать при напряжении питания выше 16 В на частотах ниже 600 МГи.


 $^{^{1}~}U_{\mathrm{K9R}}{>}20~\mathrm{B}$ допускается только при закрытом эмиттерном переходе.

Эквивалентная схема транзистора мещения 2T9137A в активном режиме:

 $r_6=0,3...0,6$ Om, $R_3=0,8$ Om, $C_{\kappa l} = 0.4$ пФ при $r_{K} = 0.3$ Om, U_{KB}^{K} =18 В, C_{K2}^{K1} =2,9 пФ при $U_{KB}^{ND} = 18 \text{ B}, C_{6M}^{NZ} = 0.4 \text{ n}\Phi, L_{6} =$ =0.4 H Γ H, L_3 =0.07 H Γ H, L_K = = 0,3 H Γ H, CI=2 π Φ , C2=1,6 π Φ , $C_{s}=30$ пФ при $U_{b\Theta}=0$, $C_{кэм}=$ $=0.8 \text{ n}\Phi$

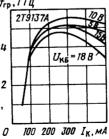




Зависимости

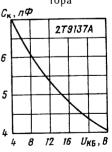
от выходной

Зависимость тока напряжебазы от ния база — эмиттер



ности f_{rp} , $\Gamma \Gamma \mu$ 2T9137A

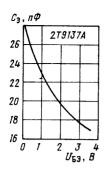
фициента усиления

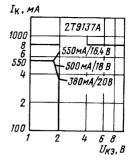

коэф-

мош-

Зависимости граничной частоты от коллектора тока

Зависимости выходной мошности и коэффициента усиления от тока коллектора

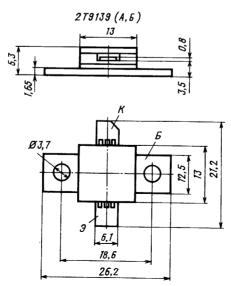



Зависимость емкоколлекторного перехода от напряжения коллектор база

фициента полезного действия коллектора от тока коллектора

коэф-

Зависимости



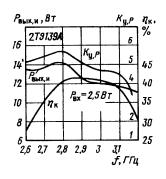
Зависимость емкости эмиттерного перехода от напряжения база — эмиттер

Области безопасной работы транзистора

2T9139A, 2T91395

Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n генераторные. Предназначены для применения в широкополосных усилителях и генераторах импульсного (2Т9139A) и непрерывного (2Т9139B) режимов работы в диапазоне частот 2,7...3,1 ГГц в схеме ОБ при напряжении питания 24 В в импульсном режиме и 21 В в непрерывном. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 10 г.

- the state of the	
Импульсная выходная мощность при $P_{\rm BX}{=}2,85~{\rm Bt},$ $t_{\rm H}{=}100~{\rm mkc},~Q{=}10,~T_{\rm K}{=}{+}25~{\rm ^{\circ}C}$ для 2T9139A, не ме-	
Hee:	46.5
на частотах $f=2.7; 2.9; 3.1 \Gamma \Gamma$ ц при $U_{\Pi}=24 \text{ B}$.	10 Вт
на частотах $f=3,1$ ГГц при $U_{II}=20$ В	7 Вт
Выходная мощность при $P_{\rm BX} = 2.5~{\rm Bt}, T_{\rm K} = +25~{\rm ^{\circ}C}$ для	
2Т9139Б, не менее:	0.0
на частотах $f=2,7; 2,9; 3,1$ ГГц при $U_n=21$ В	9 Bt
на частоте $f=3,1$ ГГц при $U_{\rm n}=20$ В	7,5 Вт
K_{0} ффициент усиления по мощности при $P_{\rm B}$	
$=2,85$ Вт, $t_{\rm H}=100$ мкс, $Q=10$, $T_{\rm K}=+25$ °C для	
2Т9139А, не менее:	3,5
на частотах $f=2.7$; 2.9; 3.1 ГГц при $U_n=24$ В	
на частоте $f=3,1$ ГГ $_{\rm II}$ при $U_{\rm n}=20$ В	2,45
Коэ ффициент усиления по мощности при $P_{\rm BX}$ =2,5 Bt, $T_{\rm K}$ = +25 °C для 2Т9139Б, не менее:	
на частотах $f=2,7; 2,9; 3,1$ ГГц при $U_n=21$ В	3,6
на частоте $f=3,1$ ГГц при $U_n=20$ В	3
Коэффициент полезного действия коллектора при	
$T_{\kappa} = +25 ^{\circ}\text{C}$, не менее:	
2T9139A:	
на частотах $f=2.7$; 2.9; 3.1 ГГц при $U_{\Pi}=$	20.07
=24 B, P_{BX} =2,85 BT, t_{H} =100 MKC, Q =10.	32 %
на частоте $f=3,1$ $\Gamma \Gamma \mu$ при $U_{\pi}=20$ B,	25 0/
$P_{\text{BX}} = 2,85 \text{ BT, } t_{\text{H}} = 100 \text{ мкс, } \dot{Q} = 10 $	35 %
на частотах $f=2.7$; 2.9; 3.1 ГГц при $U_n=$	
-91_{-} R D -9.5_{-} R _T	35 %
=21-В, $P_{\rm BX}$ =2.5 Вт	30 %
-9.5 Rr	35 %
=2,5 Вт	00 /0
$T = \pm 25 ^{\circ}\text{C}$ may $I_{VR} = 30 ^{\circ}\text{B}$	20 мА
$T_{\rm K}\!=\!+25^{\circ}{\rm C}$ при $U_{{ m KB}}\!=\!30~{ m B}$	20 W/1
$U_{\rm KF} = 25$ B	40 мА
$U_{\rm KB} = 25~{\rm B}$	10 1111
для 2Т9139А не более	30 мА
для 2Т9139А, не более	
$T_{\nu} = +25 ^{\circ}\text{C}$	10 мА
$T_{\kappa} = +25 ^{\circ}\text{C}$	20 мА
N I	
Предельные эксплуатационные данные	
Постоянное напряжение коллектор — база	30 B
Постоянное наприжение коммектор — оаза	
Постоянное напряжение эмиттер — база	1,5 B
Постоянный ток коллектора для 2Т9139Б	1,5 A
Импульсный ток коллектора для 2Т9139А	2 A
Постоянный ток базы для 2Т9139Б	0,2 A
Средняя рассеиваемая мощность коллектора в дина-	-,
MULECKOM DOWNERS TO 105 CO.O.C.	
мическом режиме ² при $T_{\rm K} = +2560~{\rm ^{\circ}C}$ для	
2Т9139Б	21,5 Вт
Импульсная рассеиваемая мощность коллектора ³ при	
$T_{\kappa} = -60 + 65 ^{\circ}\text{C}, t_{\mu} = 100 \text{мкс}, Q = 10 \text{для} 2\text{T}9139\text{A}$	23,5 Вт
	,


Тепловое сопротивление переход — корпус	8 °C/Вт
Тепловое сопротивление переход — корпус в импуль-	
сном режиме	4,6 °C/B⊤
Температура окружающей среды	
	$= +125 ^{\circ}\text{C}$

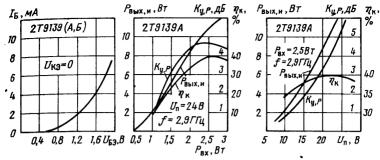
 $^{^{-1}}$ При изменении $T_{\rm K}$ от +25 до $-60\,^{\circ}{\rm C}~U_{\rm KB,~макc}$ снижается линейно до $25~{\rm B}.$

$$P_{\rm K, \, cp, \, Makc}, \, \, {\rm Bt} = \frac{200 - T_{\rm K}}{8} \, .$$

 3 В диапазоне температур $T_{\rm k}\!=\!+65...\!+\!125\,^{\rm o}{\rm C}$ импульсная рассенваемая мощность коллектора определяется из выражения

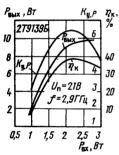
$$P_{K, H, Makc}, B_T = \frac{175 - T_K}{4.6}.$$

Зависимости импульсной выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от частоты

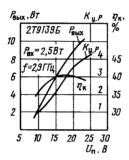

$$\begin{bmatrix} R & 25 \text{ DM} \\ Z_{\text{BX}} & L = 2,3 \text{ H/H} \end{bmatrix}$$

$$\begin{array}{cccc}
L_{\text{BX}} & R_{\text{BX}} = 150M \\
R_{\text{BX}} & L_{\text{BX}} = 1,6H\Gamma H
\end{array}$$

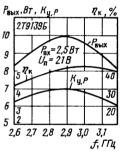
$$C_{Bbix}$$
 $R_{Bbix} = 90_{M}$
 $C_{Bbix} = 2.8 \pi \Phi$


Эквивалентные схемы входной и выходной цепей транзисторов 2Т9139 (А, Б)

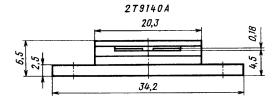
 $^{^{2}}$ В диапазоне температур $T_{\rm K} = +25...+125\,^{\circ}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения

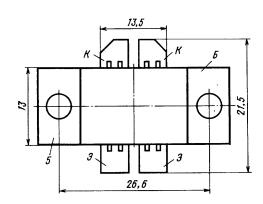


Зависимость тока базы от напряжения база — эмиттер


Зависимости импульсной выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мощности Зависимости импульсной выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мощности


Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания



Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от частоты

2T9140A

Транзистор кремниевый эпитаксиально-планарный структуры *n-p-n* генераторный. Предназначен для применения в широкополосных усилителях мощности, генераторах и умножителях в диапазоне частот 0,9...1,45 ГГц в схеме ОБ при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

_	
Импульсная выходная мощность на частотах $f=1,2;$ 1,3; 1,4 ГГц при $U_{\rm n}=32$ В, $t_{\rm u}=300$ мкс, $Q=5,$	125 Вт
$K_{y, P} = 6.5 \text{ дБ}, \eta_{K} = 45 \%, T_{K} = +25 ^{\circ}\text{C}, \text{ не менее}$. Выходная мощность на частоте $f = 1.3 \Gamma \text{L}_{\text{L}}$ при	120 D1
$U_{\rm H}$ = 28 В, $K_{\rm y, P}$ = 6 дБ, $\eta_{\rm K}$ = 45 %, $T_{\rm K}$ = +25 °C, не менее	110 Вт
Коэффициент усиления по мощности, не менее: на частотах $f=1,2;\ 1,3;\ 1,4\ \Gamma\Gamma\mu$ при $U_n=32\ B$,	
$t_{\rm H} = 300$ MKC, $Q = 5$, $P_{\rm BMX} = 125$ BT, $\eta_{\rm K} = 45$ %,	_
$T_{\rm K}\!=\!+25^{\circ}{\rm C}$	6,5 дБ
	6 E
=110 Вт, $\eta_{\rm k}$ =45 %, $T_{\rm k}$ =+25 °C	6 дБ
нее:	
на частотах $f=1,2; 1,3; 1,4$ ГГц при $U_n=32$ В,	
$t_{\rm H} = 300$ MKC, $Q = 5$, $P_{\rm BMX} = 125$ BT, $T_{\rm K} = +25$ °C	45 %
на частоте $f=1$,3 ГГц при $U_{\rm n}=28$ В, $P_{\scriptscriptstyle { m BMX}}=$.= 0.
=110 Вт, $K_{y, P}$ =6 дБ, T_{κ} =+25 °C	45 %
Обратный ток коллектора, не более:	.1.
$T_{\kappa} = +25^{\circ}$ С при $U_{\mathrm{KB}} = 50$ В	150 мА
$T_{\rm K} = +125^{\circ}{\rm C}$ при $U_{\rm KB} = 50{\rm B}$	300 мА
$T = -60$ °C при $U_{KB} = 45$ В	300 мА
Обратный ток эмиттера при U_{95} =3,5 В, T_{κ} =	
=-60+125 °C, не более	50 mA

Предельные эксплуатационные данные

Постоянное напряжение коллектор — база 1	50 B
Постоянное напряжение эмиттер — база	3,5 B
Средиий ток коллектора	10 A
Импульсный ток коллектора:	
при $t_{\rm H} = 20$ мкс, $Q = 10$	15 A
при $t_{\rm H} = 100$ мкс, $Q = 10$ или $t_{\rm H} = 400$ мкс, $Q = 5$	12 A
Средний ток базы	4,5 A
Средняя рассеиваемая мощность коллектора в дина-	
мическом режиме при $T_{\kappa} = -60 + 25 ^{\circ}\text{C}$	176 Bt
Темпе ратура <i>p-n</i> перехода	+175 °C
Тепловое сопротивление переход — корпус	0,85 °C/Bτ
Температура окружающей среды	$-60 ^{\circ}\text{C} T_{\nu} =$
	$= +125 {}^{\circ}\text{C}$

 $^{^{\}rm I}$ При изменении $T_{\rm K}$ от +25 до -60 °C $U_{\rm KB,\; макс}$ снижается линейно до 45 В.

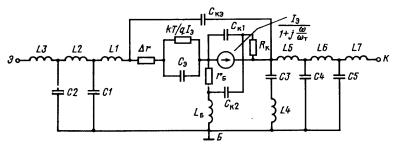
 2 При $T_{\kappa}>+25\,^{\circ}$ С средняя рассеиваемая мощность коллектора определяется из выражения

$$P_{K, cp, Makc}$$
, BT=175— $T_{K}/0.85$, $P_{K, cp}=U_{n}I_{K}+P_{BX}-P_{BMX}$.

Импульсная рассеиваемая мощность коллектора: при $T_{\nu} \leq +75$ °C:

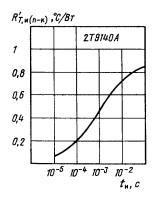
$$P_{
m K,\, M,\, Makc},\ {
m Bt=}100/R_{T,\, M(n-\kappa)};$$
 при $T_{
m K}{>}{+}75\,{\rm ^{\circ}C}{:}$

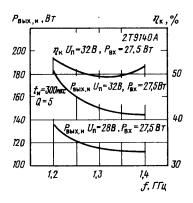
$$P_{K, H, MaKC}$$
, $B\tau = 175 - T_{K}/R_{T, H, (\Pi - K)}$, где $R_{T, H, (\Pi - K)} = R_{T, (\Pi - K)}/Q + R'_{T, H, (\Pi - K)}/Q$ ($Q-1$);


 $R'_{T, \; \mathsf{H} \; (\mathsf{n} - \mathsf{k})}$ определяется из графика.

Транзистор работает в непрерывном и радиоимпульсном режимах: при напряжении питания $28~\mathrm{B}-\mathrm{B}$ в непрерывном режиме, при напряжении питания $32~\mathrm{B}-\mathrm{B}$ радиоимпульсном режиме при $t_{\mathrm{u}}{\leqslant}1000~\mathrm{mkc}$, $Q{\geqslant}10$ и $t_{\mathrm{u}}{\leqslant}400~\mathrm{mkc}$, $Q{\geqslant}5$, при напряжении питания $35~\mathrm{B}-\mathrm{B}$ радиоимпульсном режиме при $t_{\mathrm{u}}{\leqslant}20~\mathrm{mkc}$, $Q{\geqslant}10$.

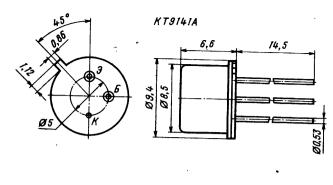
Применение транзистора в статическом режиме (в том числе в режиме класса А) не допускается.

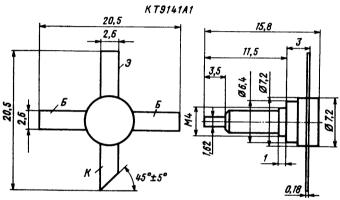

Минимальное расстояние места пайки выводов от корпуса 3 мм, температура пайки +260 °C. Допускается пайка выводов на расстоянии 1,5 мм от корпуса; при этом температура припоя не должна превышать +150 °C, время пайки не более 10 с.


При монтаже транзистора в микрополосковые линии допускается обрезать и изгибать выводы на расстоянии не менее 1,5 мм от корпуса. При этом усилие не должно передаваться на место соединения вывода с корпусом.

Эквивалентная схема замещения транзистора 2T9140A в активном режиме:

 $C_{\rm KI}\!=\!16.7$ пф, $C_{\rm K2}\!=\!52$ пф, $C_{\rm KS}\!=\!16.7$ пф, $C_{\rm S}\!=\!1300$ пф, $CI\!=\!340$ пф, $C2\!=\!5$ пф, $C3\!=\!660$ пф, $C4\!=\!46$ пф, $C5\!=\!5$ пф, $L_6\!=\!0.012$ нГн, $LI\!=\!0.04$ нГн, $L2\!=\!0.025$ нГн, $L3\!=\!0.4$ нГн, $L4\!=\!0.42$ нГн, $L5\!=\!0.27$ нГн, $L6\!=\!0.025$ нГн, $L7\!=\!0.4$ нГн/мм, $\Delta r\!=\!0.025$ Ом, $r_6\!=\!0.04$ Ом, $R_{\rm K}\!=\!0.08$ Ом




Зависимость импульсного теплового сопротивления переход — корпус от длительности импуль-

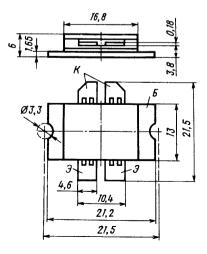
Зависимости импульсной выходной мощности и коэффициента полезного действия коллектора от частоты

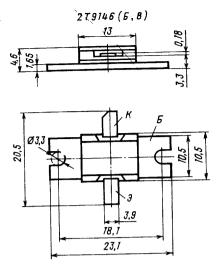
KT9141A, KT9141A1

Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n усилительные. Предназначены для применения в выходных каскадах видеоусилителей многоцветных графических дисплеев. Выпускаются в металлическом корпусе (КТ9141A) с гибкими выводами и стекляными изоляторами и в металлокерамическом корпусе (КТ9141A1) с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора в металлическом корпусе не более 1,5 г, в металлокерамическом — не более 1,9 г.

Статический коэффициент передачи тока в схеме ОЭ	
при $U_{K9} = 5$ В, $I_{K} = 50$ мА:	
$T_{\kappa} = +25 ^{\circ}\text{C}$	15 4 5
$T_{\kappa} = +85$ и -60 °C	1070
Модуль коэффициента передачи тока на высокой	
частоте при $U_{K9} = 10 \text{ B}, I_K = 50 \text{ мA}, f = 300 \text{ М} \Gamma \text{ц}$.	3.44.5*5*
Емкость коллекторного перехода при $U_{KB} = 10$ В,	-,,
не более	2.5 πΦ
смкость эмиттерного перехода при $U_{26}=0$, не более	25 пФ
Обратный ток коллектора при $U_{KB} = 120$ В, не более	0.1 mA
Ооратный ток коллектор — эмиттер при U_{V2} = 80 В.	-,
$R_{69} = 1$ кОм, не более:	
$T_{\rm K} = +25 {\rm M} - 60 {\rm ^{\circ}C}$	1 мА
1 _K =+85 °C	2 mA
Обратный ток эмиттера при U_{35} =3 В, не более:	
$T_{\kappa} = +25 ^{\circ}\text{C} \dots \dots \dots \dots \dots$	0,1 мА
$T_{\nu} = +85 \text{ и } -60 ^{\circ}\text{C}$	03 44

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база	120 B
Постоянное напряжение коллектор — эмиттер при	
$R_{69}=1$ кОм	80 B
Постоянное напряжение эмиттер — база	3 B
Постоянный ток коллектора:	
KT9141A	300 мА
КТ9141A1	400 мА
Постоянная рассеиваемая мощность коллектора	
$IIDM I_{\kappa} \leq +50 \text{ °C}$	
KT9141A	3 Вт
K19141A1	5 Br
температура <i>p-n</i> перехола	+200 °C
Тепловое сопротивление переход — корпус:	
K19141A	35 °C/B⊤
K19141A1	30 °C /B⊤
Температура окружающей среды	$-60 ^{\circ} \mathrm{C} T_{\nu} =$
	=+85 °C $$


 $^{^{\}rm 1}$ При $T_{\rm K}{>}+50~{\rm ^{\circ}C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ Makc}}, B_T = \frac{200 - T_{\kappa}}{R_{T(\Pi - \kappa})}.$$

2Т9146А, 2Т9146Б, 2Т9146В

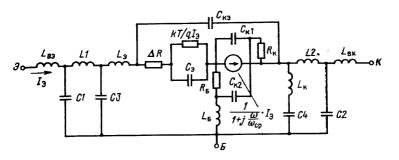
2T9146A

Транзисторы кремниевые эпитаксиально-планарные структуры *п-р-п* генераторные. Предназначены для применения в импульсных широкополосных усилителях мощности и генераторах в полосе частот 1,45...1,55 ГГц в схеме ОБ при напряжении питания 45 В. Выпускаются в металлокерамических корпусах с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора 2Т9146A не более 9 г, 2Т9146 (Б, В) — не более 5 г.

Импуль сная выходная мощность на частоте $f = 1.45$;	
1,5; 1,55 ГГц при U_n =45 В, t_u =50 мкс, Q =10,	
$T_{\nu} = +25 ^{\circ}\text{C}$, не менее:	
2T9146A при P _{2x} =50 Вт	200 Вт
2Т9146Б при $P_{av} = 32.5$ Вт	130 Вт
2Т 9146В при Р _{вх} =7 Вт	35 BT
Коэффициент усиления по мощности на частотах	
$f=1,45$; 1,5; 1,55 ГГц при $U_{\Pi}=45$ В, $t_{H}=50$ мкс,	
$Q=10, T_{K}=+25^{\circ}\text{C}$, не менее:	C TE
2 Т 9146A при $P_{\text{вх}} = 50 \text{ BT}$	бдБ
2Т9146Б при $P_{Bx}^{\circ} = 32.5$ Вт	7 дБ
2Т9146В при Р _{вх} =7 Вт	, до
Коэффициент полезного действия коллектора на частотах $f=1,45;$ 1,5; 1,55 ГГц при $U_{\rm H}=45$ В, $t_{\rm H}=50$ мкс,	
$Q=10, T_v=+25$ °C, не менее	38 %
Обратный ток коллектора при U_{KB} =50 В, не более:	JC 70
при $T_{\kappa} = +25$ °C:	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 мА
2Т9146Б	33 мА
2T9146B	8 мА
при $T_{\rm w} = +125$ и $-60^{\circ}{\rm C}$:	
2T9146A	85 мА

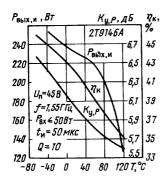
	2Т9146Б	60 mA
	2T9146B	
Обратнь	ый ток коллектор — эмиттер при $U_{\rm K3}{=}45$ В,	
не более	2:	
при	$T_{\kappa} = +25 ^{\circ}\text{C}$:	
•	2T9146A	70 мА
	2Т9146Б	
		12 мА
при	$T_{\rm K} = +125 \text{ H} - 60 ^{\circ}\text{C}$:	
	2T9146A	85 mA
	2T9146B	60 мА
0.5-	2T9146B	15 mA
Обратн	ый ток эмиттера при U_{35} =3 В, не более:	
при	T _K =+25 °C: 2T9146A	60 vA
		40 mA
	2T9146B	
пои	$T_{\kappa} = +125 \text{ n} -60 \text{ °C}$:	IO MA
при	2T9146A	75 mA
	2Т9146Б	50 мА
		13 мА
	<u></u>	
	Предельные эксплуатационные дани	
	нное напряжение питания	45 B
Постоян	нное напряжение питания	45 B 50 B
Постоян Постоян	нное напряжение питания	45 B 50 B 45 B
Постоян Постоян Постоян	нное напряжение питания	45 B 50 B 45 B 3 B
Постоян Постоян Постоян Импуль	нное напряжение питания	45 B 50 B 45 B 3 B
Постоян Постоян Постоян Импуль 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B
Постоян Постоян Постоян Импуль 2Т9 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A
Постоян Постоян Постоян Импуль 2Т9 2Т9 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Импуль 2Т9 2Т9 2Т9 Импуль	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Импуль 279 279 Импуль при t_{H}	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Импуль 279 279 279 Импуль при $t_{H} = 279$	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Импуль 2Т9 2Т9 Импуль при t _н = 2Т9 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Постоян Импуль 2Т9 2Т9 Импуль при t_{μ} 2Т9 2Т9 2Т9 2Т9 2Т9 2Т9 2Т9 2Т9 Теплово	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Постоян Импуль 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A
Постоян Постоян Постоян Постоян Импуль 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A 380 Br 260 Br 65 Br
Постоян Постоян Постоян Постоян Импуль 2Т9 2Т9 2Т9 2Т9 2Т9 Теплово $= -60$ 2Т9 2Т9	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A 380 Bτ 260 Bτ 65 Bτ
Постоян Постоян Постоян Постоян Постоян Импуль $2T9$	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A 380 BT 260 BT 65 BT 0,3°C/BT 0,55.°C/BT
Постоян Постоян Постоян Постоян Постоян Импуль $2T9$	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A 380 BT 260 BT 65 BT 0,3°C/BT 0,55°C/BT 1,8°C/BT
Постоян Постоян Постоян Постоян Постоян Импуль 279 279 279 279 279 279 279 279 279 279	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A 380 BT 260 BT 65 BT 0,3°C/BT 0,55.°C/BT 1,8°C/BT +200°C
Постоян Постоян Постоян Постоян Постоян Импуль 279 279 279 279 279 279 279 279 279 279	нное напряжение питания	45 B 50 B 45 B 3 B 19 A 13 A 3,3 A 380 BT 260 BT 65 BT 0,3°C/BT 0,55°C/BT 1,8°C/BT

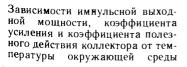
 $^{^{\}rm I}$ При $T_{\rm k}{>}+85\,^{\rm o}{\rm C}$ импульсная рассеиваемая мощность коллектора определяется из выражения

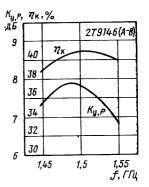

$$P_{K, H, Makc}, B_T = \frac{T_{\pi} - T_{\kappa}}{R_{T, H}(\pi - \kappa)}$$

где

$$R_{T, \, \text{H} (\Pi - K)} = \frac{1,1}{Q} + 0.03 \left(1 - \frac{0.86}{\sqrt{Q}} \right) \, \sqrt{t_{\text{H}}} \,$$
для 2Т9146А,

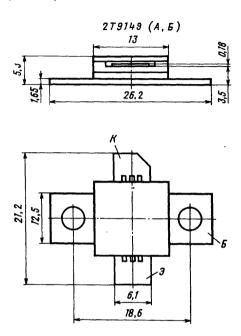

$$\begin{split} R_{T,\;\mathbf{H}\,(\mathbf{n}-\mathbf{K})} &= \frac{1.7}{Q} + 0.072 \; \left(1 - \frac{0.86}{\sqrt{Q}}\;\right) \sqrt{t_{\mathbf{H}}} \;\; \text{для 2Т9146B,} \\ R_{T,\;\mathbf{H}\,(\mathbf{n}-\mathbf{K})} &= \frac{6}{Q} + 0.23 \; \left(1 - \frac{0.86}{\sqrt{Q}}\right) \sqrt{t_{\mathbf{H}}} \;\;\; \text{для 2Т9146B.} \end{split}$$


Формулы справедливы при $P_{\text{K, н, макс}}$ ≤ 520 Вт для 2Т9146A, $P_{\text{K, н, макс}}$ ≤ 390 Вт для 2Т9146Б и $P_{\text{K, н, макс}}$ ≤ 100 Вт для 2Т9146В.



Эквивалентная схема замещения транзисторов:

ЭКВИВДЛЕНТИЯ СЛЕМЯ ЗАМЕЩЕНИЯ ТРАНЯСТОРОВ. ЭКВИВДЛЕНТИЯ СЛЕМЯ ЗАМЕЩЕНИЯ ТРАНЯСТОРОВ. 2=C4=A пФ, C_8 =210 пФ, C_{κ} =300 пФ, C_{κ} =100 пФ, C_{κ} =100 пФ, C_{κ} =2-24 пФ, C_3 = C_4 =210 пФ, L_3 =0,06 нГн, L_{κ} =0,12 нГн, L_{κ} =0,7 нГн, L_{κ} =0,7 нГн, L=0,5 нГн, L2=0,4 нГн, L=0,012 нГн, L8=0,020 м, R_{κ} =0,60 м, R_{κ} =0,1 Ом; 2T914665: C_{κ} =18 пФ, C_{κ} 2=50 пФ, C_{κ} 5=5 пФ, C_{κ} 5=5 пФ, C_{κ} 5=00 пФ, C_{κ} 5=0,2 нГн, L2=0,8 нГн, L_{κ} 6=0,3 нГн, L_{κ} 8=0,1 Ом, R_{κ} 9-1,20 м, R_{κ} 9-1,20 пФ, R_{κ} 9-1,20 п



Зависимости коэффициента усиления и коэффициента полезного действия коллектора от частоты

2Т9149А, 2Т9149Б

Транзисторы кремниевые эпитаксиально-планарные структуры n-p-n усилительные. Предназначены для применения в импульсных усилителях мощности в диапазоне частот 2...2,3 ГГц в схеме ОБ при напряжении питания 28 В. Выпускаются в металлокерамическом корпусе с полосковыми выводамч. Тип прибора указывается на корпусе. Масса транзистора не более 5,5 г.

импульсная выходная мощность на частотах $f=2$;	
2,15; 2,3 ГГц при $U_{\rm H}$ =28 В. $t_{\rm h}$ =300 мкс, Q =5,	
$T_{\kappa} = +25 ^{\circ}\text{C}$, не менее:	
2Т9149A при Р _{вх} =7,5 Вт	30 Вт
2Т9149Б при Р _{вх} =3 Вт	12 Br
Коэффициент полезного действия на частотах $f=2$;	
2,15; 2,3 ГГц при $U_{\parallel} = 28$ В, $t_{\parallel} = 300$ мкс, $Q = 5$,	
$T_{\rm K} = +25 ^{\circ}\text{C}$, He MeHee:	
2T9149A при P _{вх} =7,5 Вт	30 %
2Т9149Б при $P_{\text{Bx}} = 3$ Вт	35 0/
Обратный ток коллектора при $U_{\rm KB}$ = 45 В, не более:	33 / ₀
при $T_v = +25$ °C:	
	100
2T9149A	100 MA
2Т9149Б	50 мА
при $T_{\kappa} = +125 \text{ и } -60 \text{ °C}^{1}$:	
2T9149A	150 мА
2Т9149Б	100 мА

Обратнь	ий то Т —	к эм ⊥25	иит (° (тер	oa	пр	и (Јэ	₆ =	2	В,	не	б	эле	e:	
при	2T91	49A														50 mA
при	$T_{\nu} =$	+12	25	и -	-60	0°	C:									20 мА
	2T91	49A														100 мА 40 мА
	2191	490	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	40 M/A

При $T_{\rm K} = -60$ °C $U_{\rm KB} = 40$ В.

Предельные эксплуатационные данные

Постоянное напряжение питания	28 B
Постояниое напряжение коллектор — база	45 B
Постоянное напряжение эмиттер — база	2 B
Импульсный ток коллектора при $t_{\rm H}$ =300 мкс, Q =5:	
2T9149A	4,5 A
2Т9149Б	2,1 A
Импульсная рассеиваемая мощность коллектора ² при	
$t_{\nu} = 300 \text{ MKC}, Q = 5, T_{\nu} = +60 ^{\circ}\text{C}$:	
T9149A	100 Вт
. 2Т9149Б	56 В т
Тепловое сопротивление переход корпус в им-	
пульсном режиме ³ :	
2T9149A	1,25 °C/Bτ
2Т9149A	2,22 °C/B⊤
Температура р-п перехода	+185 °C
Температура окружающей среды	-00° C I_{K} =
	$=+125 ^{\circ}\text{C}$

 $^{^{\}rm I}$ При изменении $T_{\rm K}$ от +25 до -60 °C $U_{\rm KB,\; макс}$ снижается линейно до 40 В.

 2 При $T_{\rm K}\!\!>\!+60~^{\circ}{\rm C}$ импульсная рассеиваемая мощность коллектора определяется из выражения

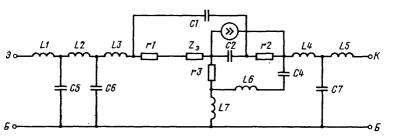
$$P_{K, H, Makc}, BT = \frac{185 - T_{K}}{R_{T, H(\Pi - K)}}$$

 3 При $T_{\rm K}\!>\!+60~^{\circ}{\rm C}$ $R_{T,~{\rm H}(\pi-{\rm K})}$ возрастает линейно до 1,4 °C/Вт для 2Т9149А и до 2,5 °C/Вт для 2Т9149Б при $T_{\rm K}\!=\!+125~^{\circ}{\rm C}.$

Расстояние от корпуса до начала изгиба вывода не менее 3 мм. При монтаже транзисторов в микрополосковые линии разрешается обрезать полосковые выводы на расстоянии не менее 3 мм от корпуса, а также формовать выводы транзистора на расстоянии не менее 1 мм от корпуса. При этом усилие не должно передаваться на место соединения вывода корпусом. Температура корпуса транзистора при пайке не должна превышать +150 °C; при этом допускается пайка на расстоянии 1 мм от корпуса, время пайки не более 3 с.

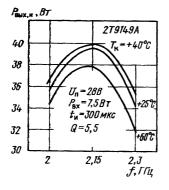
Расстояние от корпуса до места лужения и пайки не менее

3 мм, температура припоя +260°С, время пайки не более 3 с. Допускается пайка фланца корпуса транзистора к теплоотводу при температуре пайки +150°С, время пайки 1 мин.


Допускается использовать транзистор в режиме с $t_{\rm H}$ до 500 мкс и Q=5, при этом значение $P_{\rm K}$ и, макс не должно превышать 65 Вт для 2Т9149A и 25 Вт для 2Т9149Б при $T_{\rm K}=+60\,^{\circ}{\rm C}$.

Допускается использовать транзистор в непрерывном при этом значение $P_{\rm K, cp, макc}$ не должно превышать 2Т9149A и 20 Вт для 2Т9149Б при $T_{\rm K}\!=\!+60\,^{\circ}{\rm C}.$

При $T_{\kappa} = +60... + 125$ °C средняя рассеиваемая мощность коллектора определяется из выражения


$$P_{K, \text{ cp, Make}}, \text{ Br} = \frac{150 - T_K}{R_{T(n-K)}};$$

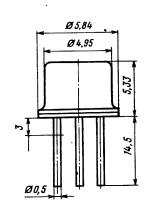

 $R_{T(n-k)}$ увеличивается линеино от 4,5 до 3,12 °C/Вт при $T_{\rm k} = +125$ °C для 2Т9149A и соответственно от 4,5 до увеличивается линейно от 2,6°C/Вт при $T_{\nu} = +60$ °С до

Эквивалентная схема замещения транзистора в активном режиме: 2Т9149А. LI=L5=0.35 нГн при I=2 мм, L2=0.06 нГн, L3=0.08 нГн, L4=0.4 нГн, L6=0.4

219149А. LI=L5=0,35 н1н при l=2 мм. LZ=0.06 нГн. L3=0.08 нГн. L4=0.4 нГн. L6=0.19 нГн — резонанс выходного контура при $U_{K6}=28$ В на частоте f=2 ГГц. L7=0.018 нГн. $C_1=19$ пФ. $C_2=3.7$ пФ. $C_4=364$ пФ. $C_5=C_7=3.1$ пФ. $C_6=65$ пФ. $C_6=C_2+C_3+C_1=42$ пФ при $U_{K5}=28$ В. r1=0.12 Ом. r2=0.015 Ом. r3=0.05 Ом: 279149Б: L1=L5=0.35 нГн при l=2 мм. L2=0.3 иГи. L3=0.2 иГн. L4=1.5 нГн. L6=0.35 нГн — резонанс выходного контура при $U_{K5}=28$ В на f=1.85 ГГц. L7=0.036 нГн. $C_1=4.2$ пФ. $C_2=2.1$ пФ. $C_5=C_7=3.1$ пФ. $C_6=23$ пФ. $C_6=130$ пФ. $C_6=C_7=4.5$ нГн. $C_1=4.2$ пФ. $C_2=0.012$ Ом. $C_2=0.042$ Ом. $C_3=0.012$ Ом. $C_3=0.012$ Ом. $C_4=0.012$ ПФ. $C_5=0.012$ Ом. $C_5=0.012$ Ом. $C_7=0.012$ О

Зависимости импульсной выходной мощности от частоты

Зависимости импульсной выходной мощности от частоты

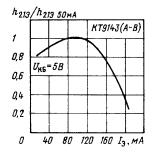

Транзисторы р-п-р

КТ9143A, КТ9143**Б**, КТ9143**B**

9 6 2,5 K

KT9143 (A-B)

Траизисторы кремниевые эпнтакснально-планарные структуры *p-n-p* усилительные. Предназначены для применения в выходных каскадах усилителей мощности. Выпускаются в металлическом корпусе с гибкими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 2 г.

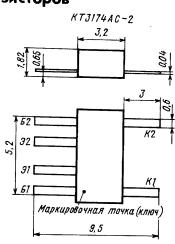


Статический коэффициент передачи тока в схеме ОЭ	
при $U_{KB}=5$ В, $I_{A}=50$ мА:	
при $T_{\rm w} = +25$ и $+85$ °C:	
KT9143A, KT9143B, не менее	2 0
КТ9143Б	
прн $T = -60 ^{\circ}$ C:	
КТ9143A, КТ9143B, не менее	10
КТ9143Б	1060
Граничная частота при $U_{KB} = 10 \text{ B}, I_{3} = 50 \text{ мA}$, не ме-	
нее:	
КТ9143A, КТ9143Б	1.5 ГГи
KT9143B	1 ГГп
Емкость коллекторного перехода при $U_{\rm KB} = 10$ В, не	
более:	
КТ9143А, КТ9143Б	3 пФ
KT9143B	4 пФ
Обратный ток коллектор — эмиттер при $U_{\rm K3} = 50$ В,	•
$R_{69} = 1$ кОм, не более:	
$T_{\kappa} = +25 ^{\circ}\text{C}$	1 w A
$T = \pm 85 \circ C$	9 4 1

Предельные эксплуатационные данные

Постоянное напряжение коллектор — база	75 B
$R_{69}=1$ kOm	65 B
Постоянное напряжение эмиттер — база	3 B
Постоянный ток коллектора	100 мА
Импульсный ток коллектора при $t_{\rm H}{=}500$ мкс, $Q{=}100$ Постоянная рассеиваемая мощность коллектора 1 :	
$T_{\rm K} = -60 + 25 {\rm °C}$	3 Вт
$I_{\kappa} = +85$ °C	15 BT
температура p - n перехода	±150 °C
Температура окружающей среды	60 °CT=

 $^{^{-1}}$ При изменении $T_{ ext{K}}$ от +25 до $+85\,^{\circ}\text{C}$ $P_{ ext{K, макс}}$ уменьшается линейно.


Зависимость статического коэффициента передачи тока от тока эмиттера

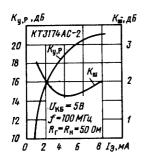
Раздел восьмой **Сборки транзисторов**

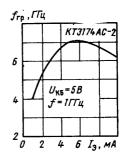
Транзисторы п-р-п

KT3174AC-2

Сборка из двух кремпиевых эпитаксиально-планарных структуры *n-p-n* усилительных транзисторов. Предназначена для применения в широкополосных дифференциальных усилителях, сумматорах, компараторах, смесителях, балансных усилителях. Бескорпусные, на кристаллодержателе, с гибкими выводами. Тип прибора указывается на групповой таре. Масса транзистора не более 0,094 г.

Жозфо нциент шума на частоте f=100 МГц при	
$I_{1} = 5.8 I_{2} = 3 \text{ MA}, R_{c} = R_{c} = 50 \text{ OM}$	1,2*1,8*3 дБ
Статический коэффициент передачи тока в схеме ОЭ	
$m_{N} U_{N} = 5 \text{ B}, I_{3} = 3 \text{ MA}$:	
T=+25 °C	80160*270*
T=+125 °C, не менее	80
$T = -60 ^{\circ}\text{C}$, не менее	
Отиошение статических коэффициентов передачи то-	
ка в схеме ОЭ при U_{KB} =5 В, I_{3} =3 мА	0,81
Абсолютная разность прямых падений напряжений	,
база — эмиттер при U_{Kb} =5 В, I_3 =3 мА, не более	10 mB
Емкость коллекторного перехода при $U_{\rm KB} = 5$ В, типо-	
вое значение	0.64* пФ
Емкость эмиттерного перехода при U_{96} =0, типовое	0,01
	0.7* пФ
значение	0,1 114
T = +25 и -60 °C	1 www.A
T=+125 °C	ZU MKA
Обратный ток эмиттера при $U_{36} = 1$ В, не более:	20 1
$T = +25 \text{ M} -60 \text{ °C} \cdot \cdot$	20 MKA
T=+25 и −60 °С	200 мкА
 ★ Mg/ + ng 	
Desertium over migremuchum wenum	10

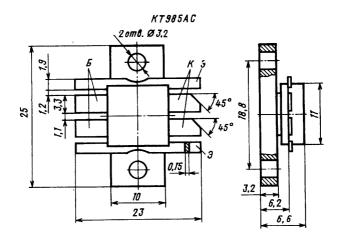

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база	10 B
Мостоянное напряжение эмиттер — база	1 B
Постоянный ток коллектора	7,5 мА
Мостоянная рассеиваемая мощность коллектора при	•
$T = -60 + 75 ^{\circ}\text{C}$	150 мВт
Температ ура <i>p-n</i> перехода	+150 °C
Тепловое сопротивление переход — среда	400 °C/Вт
Tennenatuna oknywamueŭ chemu	_60 ±125°C

 $^{^{\}rm I}$ При $T{>}{+}75~^{\rm o}{\rm C}$ $P_{\rm K,\; макс}$ снижается линейно до 60 мВт при $T{=}{+}125~^{\rm o}{\rm C}.$

Расстояние от кристаллодержателя до места пайки не менее 2 мм, температура пайки не выше +265 °C, время пайки не более 4 с. Допускается пайка выводов на расстоянии не менее 1 мм от кристаллодержателя при условии обеспечения надежного теплоотвода; при этом следует пользоваться серебряно-индиевыми или другими припоями, не приводящими к возникновению интерметаллических соединений. Температура пайки не выше +260 °C, время пайки не более 3 с.

. Допускается однократный изгиб выводов с радиусом закругления не менее 1,5 мм на расстоянии не менее 1 мм от кристаллодержателя.



Зависимости коэффициента шума и коэффициента усиления от тока эмиттера

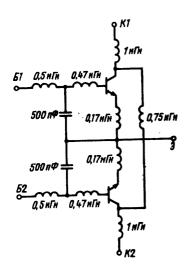
Зависимость граничной частоты от тока эмиттера

KT985AC

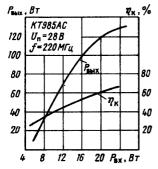
Сборка из двух кремниевых эпитаксиально-планарных структуры n-p-n генераторных транзисторов. Предназначена для применения в двухтактных широкополосных усилителях мощности в диапазоне частот 220...400 МГц при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Сборка содержит внутренние согласующие LC-звенья для каждого транзистора. Тип сборки указывается на корпусе. Масса сборки не более 10 г.

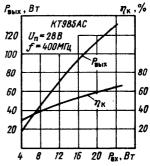
Выходная мощность в двухтактной схеме на частоте $f=400~\text{M}$ прн $U_{\Pi}=28~\text{B}$, $P_{\text{Bx}}=35.7~\text{Bt}$, $T_{\text{K}}=+40~\text{°C}$, не менее	125 B _T
схеме на частоте f =400 МГц при U_{Π} =28 В, $P_{\text{вых}}$ ==125 Вт, T_{K} =+40 °С	3,5*5,6*7,4*
Коэффициент полезного действия в двухтактной схеме на частоте $f=400$ МГц при $U_{\rm n}=28$ В, $P_{\rm BMX}=125$ Вт, $T_{\rm k}=+40^{\circ}{\rm C}$	5061*65,5* %
Модуль коэффициента передачи тока на высокой	2,23,6*6,4*
Критнческий ток при $U_{K9}=10$ В, $f=300$ МГц . Постоянная времени цепи обратной связи на высокой	26*37*45* A
частоте при $U_{KB} = 10 \text{ B}, I_3 = 0.5 \text{ A}, f = 5 \text{ M} \Gamma \text{ ц}$.	10*14*21* пс
Емкость коллекторного перехода при $U_{\rm KB}{=}28~{ m B}$	160*195* 270 πΦ
Обратный ток коллектор — эмиттер при $U_{\rm K3}{=}50~{\rm B},$ $R_{\rm 65}{=}10~{\rm CM},$ не более	120 мА 60 мА
фициента отражения нагрузки в пределах 0360° при U_n =24 В, f =400 МГц, T_{κ} =+40 °C при кратковременной работе (3 с) и уровне выходной мощности на согласованную нагрузку не более 80 Вт, не более	10*

Предельные эксплуатационные данные


Постоянное напряжение питания	28 B
Постоянное напряжение коллектор — эмиттер при	
$R_{69}=10 \text{ Om}$	50 B
110стоянное напряжение эмиттер — база	4 B
11остоянный ток коллектора	17 A
110CTOЯНИАЯ РАССЕИВАЕМАЯ МОШНОСТЬ КОЛЛЕКТОВА ПВИ	
$T_{\rm K} \leq +40 {\rm ^{\circ}C}$	105 Вт
Средняя рассеиваемая мошность коллектора в лина.	
мическом режиме при $T_{\nu} \leq +40$ °C.	185 Вт
температура p - n перехода	+160 °C
тепловое сопротивление переход — корпус	1,05 °C/Bτ
тепловое сопротивление переход — корпус в линами-	
ческом режиме.	0,65 °C/Bτ
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\nu} =$
	— 185°C °

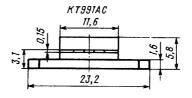
 $^{^{\}rm I}$ При $T_{\rm k}{>}{+}40\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{K, \text{ Make}}, B_T = \frac{160 - T_K}{1,05}.$$


$$P_{K, cp, makc}, B_T = \frac{160 - T_k}{0.65}.$$

 $^{^{2}}$ При $T_{\rm k} > +40$ °C

Электрическая схема транзисторной сборки КТ985АС



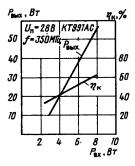
Зависимости выходиой мощиости и коэффициента полезного действия коллектора от входной мощности

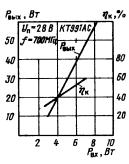
Зависимости выходиой мощности и коэффициента полезного действия коллектора от входиой мощиости

KT991AC

Сборка из двух кремниевых эпнтаксиально-планарных структуры n-p-n генераторных транзисторов. Предназначена для применения в двухтактных широкополосиых усилителях мощности в схеме ОБ в полосе частот 350...700 МГц при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 10 г.

Выходная мощность в двухтактной схеме на частоге	
$f = 700 \text{ M}$ Гц при $U_{\text{п}} = 28 \text{ B}, P_{\text{вх}} = 9.2 \text{ Bt}, T_{\text{к}} \le +40 ^{\circ}\text{C},$	
не менее	55 Вт
Коэффициент усиления по мощности в двухтактной	
схеме на частоте $f=700$ МГн при $U=28$ В	
$P_{\rm BMx}$ =55 Bt, $T_{\nu} \leq +40$ °C.	68*10*
коэфф ициент полезного действия коллектора в двух-	
тактиой схеме на частоте $f = 700 \text{ M} \Gamma \text{п при } U = 28 \text{ B}$	
$P_{\text{BMX}} = 55 \text{ Bt}, T_{\text{K}} \leq +40 ^{\circ}\text{C}$	5058*65* %
Модуль коэффициента передачи тока на высокой	
частоте при $U_{K9}=10$ В, $I_{K}=3$ А, $f=300$ МГц	1,82,2*2,5*
Критический ток при $U_{\rm K3}{=}10~{\rm B},f{=}300~{\rm M}\Gamma_{\rm H}$	
Постояиная времени цепи обратной связи при $U_{\mathrm{K}\mathrm{B}}$, ,
=5 B, I ₃ =1 A	4,6*6*6,8* nc
Емкость коллекторного перехода при $U_{\rm KB}{=}28~{\rm B}$.	49*52*73 πΦ
Обратный ток коллектора при $U_{\rm KB} = 50~{\rm B}$, не более	4932 ·13 · ΠΨ
Обратный ток компектора при Ока во В, не облее	50 MA
Обратный ток эмиттера при U_{36} =4 В, не более	20 мА
КСВН коллекторной цепи при изменении фазы коэф-	
фициента отражения в пределах 0360° при $U_{\parallel} =$	
$=28$ В, $f=500$ МГц, $T_{\rm K} \le +50$ °С при кратковремен-	
расоте (3 C) и уровне выходной мошности на	
согласованной нагрузке 45 Вт, не более	10*

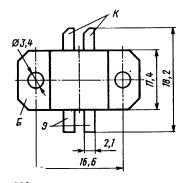

Предельные эксплуатационные данные


Постоянное напряжение питания			29 B
**VCIONHHOE Hannawattio Hannavana 6 -			EO D
Постоянное напряжение компектор — озаз постоянный ток коллектора.			4 B
Постоянный ток коллектора			3,75 A

Постоянная рассеиваемая мощность коллектора при	
$T_{\mathbf{k}} \leqslant +40 ^{\circ}\text{C}$	67,5 Вт
Температура <i>p-n</i> перехода	+175°C
Тепловое сопротивление переход — корпус	2°C/BT
Температура окружающей среды	$-60^{\circ}CI_{K}=$
	$=+125 {}^{\circ}\text{C}^{-}$

 $^{^{\}rm I}$ При $T_{\rm k}{>}+40~{\rm ^{\circ}C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, \text{ make}}$$
, BT= $\frac{175-T_{K}}{2}$



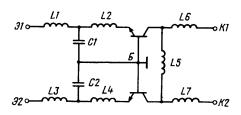
Зависимости выходной мощности и коэффициента полезного действия коллектора от входной мощности

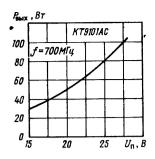
Зависимости выходной мощности и коэффициента полезного действия коллектора от входной мощности

KT9101AC

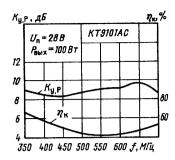
Сборка из двух кремниевых эпитакснально-планарных структуры *n-p-n* генераторных транзисторов. Предназначена для применения в двухтактных широко-полосных усилителях мощности и генераторах в схеме ОБ в полосе частот 350...700 МГц при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса сборки не более 7 г.

Выходная мощность в двухтактной схеме на частоте $f=700\mathrm{M}\mathrm{\Gamma}\mathrm{u}$ при $U_\mathrm{n}=28\mathrm{B}$, $P_\mathrm{BX}=28.5\mathrm{Br}$, $T_\mathrm{K}\leqslant+40^\circ\mathrm{C}$,	
не менее	100 B _T
Коэффициент усиления по мощности в двухтактной	
схеме на частоте $f = 700 \text{ M} \Gamma \mu$ при $U_{\Pi} = 28 \text{ B}$, $P_{\text{вых}} =$	
=100 Bt, $T_{\rm K} \le +40 ^{\circ}{\rm C}$	3,516,5
Коэффициент полезного действия в двухтактной	
схеме на частоте $f = 700 \text{ М} \Gamma \mu$ при $U_{\rm n} = 28 \text{ B}, P_{\rm BMX} =$	
=100 Bt, $T_{K} \le +40 ^{\circ}\text{C}$	5053,8*58* %
Модуль коэффициента передачи тока на высокой ча-	· -
стоте при $U_{K3}=10$ В, $I_{K}=5$ А, $f=100$ МГц	3,56,5*7,3*
Постоянная времени цепи обратной связи на высокой	
частоте при U_{KB} =5 В, I_9 =0,5 А, f =5 М Γ и	4,4*.∴8,8*45* nc
Емкость коллект орного перехода при U_{KB} =28 В	100*102* 150 пФ
Обратный т ок коллектора при $U_{\rm KB}{=}50$ В, не более	150 пФ 80 мА
Обратный ток эмиттера при $U_{26}=4$ В, не более	30 мА
КСВН коллекторной цепи при изменении фазы ко-	JU MA
эффициента отражения в пределах 0360° при	
$U_{\rm n}$ =24 В, f =500 МГц, $T_{\rm k}$ \leq +50 °С при кратковре-	
менной работе (3 с) и уровне выходной мощности	
на согласованной нагрузке 60 Вт, не более	10*

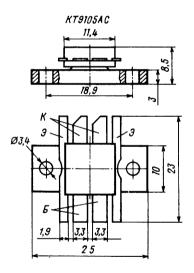

Предельные эксплуатационные данные


Постоянное напряжение питания	29 B
Постоянное напряжение коллектор — база	50 B
Постоянное напряжение эмиттер — база	4 B
Постоянный ток коллектора 1	7 A
Средняя рассеиваемая мощность коллектора в дина-	
мическом режиме ² при $T_{\nu} = +40 {}^{\circ}\text{C}$	128 Вт
Температура <i>p-n</i> перехода	+190 °C
Гепловое сопротивление переход — корпус	1.15 °C/B _T
Температура окружающей среды	$-45 ^{\circ}\text{C}T.=$
	$=+85 ^{\circ}\text{C}^{\ \ \ \ \ }$

 $^{\rm I}$ Значение $I_{\rm K}$ макс указано для одного транзистора. $^{\rm 2}$ При $T_{\rm k}{>}+40\,^{\rm o}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения


$$P_{K, cp, make}$$
, $B_T = \frac{190 - T_K}{1.15}$.

Принципиальная электрическая схема транзисторной сборки KT9101AC: L1=L3=0.6 вГн. L2=L4=0.28 вГн. L5=4.5 вГн. L6==L7=1.25 вГн. C1=C2=230 пФ



Зависимость выходной мощности от напряжения питания

Зависимости коэффициента усиления и коэффициента полезного действия коллектора от частоты

KT9105AC

Сборка из двух кремниевых эпитаксиально-планарных структуры п-р-п генераторных транзисторов. Предназначена для применения в двухтактных широкополосных усилителях мощности и генераторах в схеме ОЭ в диапазоне частот 100...500 МГц при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса сборки не более 10 г.

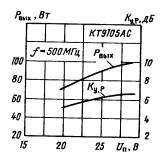
Электрические параметры

Выходная мощность в двухтактной схеме на частоте f=500 МГц при $U_{\rm n}=28$ В, $P_{\rm BX}=33,3$ Вт, $T_{\rm K}\leqslant +40$ °C, 100 Вт Коэффициент усиления по мощности в двухтактной схеме на частоте f=500 МГц при $U_{\rm II}=28$ В, $P_{\rm BHY}=$ =100 Bt, $T_{\rm K} \leq +40 \,^{\circ}{\rm C}$ Коэффициент полезного действия в двухтактной схеме на частоте $f = 500 \,\mathrm{M}\Gamma$ ц при $U_{\mathrm{n}} = 28 \,\mathrm{B}, P_{\mathrm{BMX}} = 100 \,\mathrm{Br},$ $T_{\rm h} \leq +40$ °C

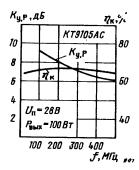
3...4,4*...5,4*

50...61*...71,4* %

Модуль коэффициента передачи тока на высокой частоте при $U_{\rm K3}{=}10~{\rm B}$, $I_{\rm K}{=}5~{\rm A}$, $f{=}300~{\rm M}\Gamma_{\rm U}$	27*32*38* A 4*4,8*12* πc 130*150*240* πΦ 0,1*23*120 мA 60 мA
Предельные эксплуатационные данн	
Постоянное напряжение питания	28 A
Постоянное напряжение коллектор — эмиттер при $R_{69}{=}10~{\rm OM}$	16 A 133 Вт +160 °С 0.9 °С/Вт
	1

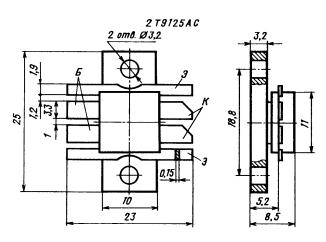

 1 При $T_{\rm K}\!>\!+40\,^{\rm o}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения

$$P_{K, cp, макс}$$
, $B_{T} = \frac{160 - T_{K}}{0.9}$.


 L_{B2}
 L_{B1}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B2}
 L_{B1}
 L_{B2}
 L_{B2}
 L_{B2}
 L_{B1}
 L_{B2}
 $L_$

Принципиальная электрическая схема транзисторной сборки KT9105AC:

$$L_{61}{=}0.47$$
 нГн, $L_{62}{=}0.5$ нГн, $L_{\kappa}{=}1$ нГн, $L_{9}{=}$ = 0.17 нГн, $C{=}440$ н Φ

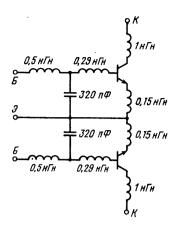

Зависимости выходной мощности и коэффициента усиления от напряжения питания

Зависимости коэффициента усиления и коэффициента полезного действия коллектора от частоты

2T9125AC

Сборка из двух кремниевых эпитаксиально-планарных структуры п-р-п генераторных транзисторов. Предназначена для применения в двухтактных широкополосных усилителях в диапазоне частот 100...500 МГц в с мощности и генераторах схеме 03 при напряже-28 B. Выпускается в металлокерамическом питания корпусе с полосковыми выводами. Тип сборки указывается корпусе. Масса сборки не более 10 г.

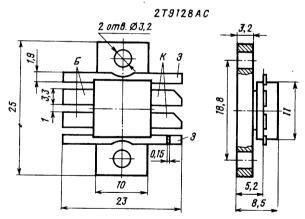
Вы	ходная 500 м г	M	ощ	HO0	сть	B ,	цву	XTE	KT	ной	i ez	кем	e F	a	час	тоте	·	
<i>1</i> —	500 МІ менее	ц	upr	10	n ===	28	В,	$P_{\rm B}$	ζ=				I _K ≤		⊢4 () °C,	50	Вт


Глаинчиое напряжение при I_{3} =50 мA, не менее '	055,2*70* % 110 2,23*4,9*
Обратный ток коллектор — эммитер при $U_{\rm K3} = 55 \text{ B}$, $R_{\rm s} = 10 \text{ Om}$, не более	60 мА
Обратный ток эмиттера при $U_{\rm 9B}{=}4~{\rm B}$, не более Разность коллекторных токов в сборке из частоте	30 мА
f =500 МГц при $U_{\rm n}$ =28 В, $P_{\rm BMX}$ =50 Вт, $T_{\rm K}$ \leqslant +40 °C, не более	0,5 A
КСВН при всех фазах коэффициента отражения при $U_n = 28$ В, $T_k \leqslant +50^{\circ}$ С при кратковременном рассогласовании (3 с) и уровне выходной мощности на согласованной нагрузке не более 30 и 45 Вт на частотах 100 и 400 МГц соответственно, не более	10*
Предельные эксплуатационные данны	ie
Постоянное напряжение питания	28 B
Постоянное напряжение коллектор — эмиттер при $R_{69} = 10 \text{ Ом}$	55 B
Постоянное напряжение база — эмиттер	4 B 4 A
Постоянная рассеиваемая мощность коллектора при $T_{\kappa} \leq +40 ^{\circ}\mathrm{C}$	60 Вт
намическом режиме при $T_{\kappa} \leq +80$ °C	64 Bτ
Температура <i>p-n</i> перехода	+160 °С 2 °С/Вт
Тепловое сопротивление переход — корпус в дина- мическом режиме	1,25 °C/Вт
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\kappa} =$
	=+125 °C

 $^{^{\}rm I}$ При $T_{\rm K}\!>\!+40\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения

$$P_{\rm K, \, Makc}, \, \, {\rm Bt} = \frac{160 - T_{\rm K}}{2}.$$

$$P_{\rm K, \, cp, \, make}, \, \, {\rm Bt} = \frac{160 - T_{\rm K}}{1,25} \, .$$


 $^{^{2}}$ При $T_{\rm K} > +80$ °C

Принципиальная электрическая схема транзисторной сборки 2Т9125AC

2T9128AC

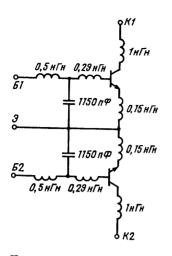
Сборка из двух кремниевых эпитаксиально-планарных структуры *n-p-n* генераторных транзисторов. Предназначена для применения в двухтактных усилителях мощности в диапазоне частот 100...200 МГц в схеме ОЭ при напряжении питания 28 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Сборка содержит внутренние цепи согласования по входу. Тип прибора указывается на корпусе. Масса сборки не более 10 г.

Электрические параметры

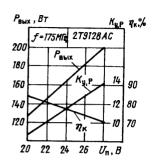
Выходная мощность в двухтактной схеме на частоте f=175 М Γ ц при $U_{\rm n}$ =28 В, $T_{\rm k}$ =+40 °C, не менее Коэффициент усиления по мощности в двухтактной схеме на частоте f=175 М Γ ц при $U_{\rm n}$ =28 В, $P_{\rm выx}$ ==200 Вт, $T_{\rm k}$ =+40 °C, не менее 5,5

Коэффициент полезного действия в двухтактной схе-	
иа частоте $l=1/5$ М1 ц при $U_{\rm H}=28$ В, $P_{\rm BMX}=$	
-200 Bt. $T_{\rm w} = +40$ °C, he mehee	60 %
Статический коэффициент передачи тока в схеме	100
Модуль коэффициента передачи тока на высокой частоте при $U_{K9}{=}10$ В, $I_{K}{=}5$ А, $f{=}100$ МГц,	2
не менее	2
Критический т ок при $U_{K3} = 10 \text{B}$, $f = 100 \text{M}$ ц, не менее	12 A
Постоянная времени цепи обратной связи на высокой частоте при $U_{\rm KB}{=}5$ В, $I_{\rm 3}{=}0.5$ А, $f{=}5$ МГц,	
по более	30 пс
Емкость коллекторного перехода при $U_{KB}=28$ В,	
не более	430 пФ
Емкость эмиттерного перехода при U_{96} =0, не более	4300 пФ
Обратный ток коллектор — эмиттер при $U_{\rm K3} = 50 {\rm ~B},$	100 1
R ₆₉ =10 Ом, 'не более	100 MA
Обратный ток эмиттера при $U_{36} = 4$ B, не более.	80 мА
Разность коллекторных токов в сборке при $U_{\rm n}=$	
=28 В, Р _{вых} =200 Вт, f=175 МГц, не более	1 A
КСВН при изменении фазы коэффициента отра-	
жения иагрузки в пределах 0360° при $U_{\pi}{=}24$ В, $T_{\kappa}{=}{+}50^{\circ}\mathrm{C}$ при кратковременном рассогласовании	
(3 с) и уровне выходной мощности на согласован-	
ной нагрузке не более 110 Вт на частоте f =200 МГц	
и не более 100 Вт на частоте $f = 100$ МГц, не более	5*
H HO GOMES TO SEE	

Предельные эксплуатационные данные

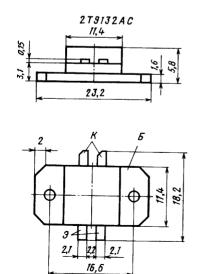

Постоянное напряжение питания	28 B
Постоянное напряжение коллектор — эмиттер при	
$R_{69}=10 \text{ Om} \dots \dots \dots \dots \dots \dots$	50 B
Постоянное напряжение база — эмиттер	4 B
Постоянный ток коллектора	18 A
Постоянная рассеиваемая мощность коллектора' при	
$T_{\rm K} \leq +50{\rm ^{\circ}C}$	115 Вт
Средняя рассеиваемая мощность коллектора в дина-	
мическом режиме ² при $T_{\kappa} \leq +50$ °C	180 Вт
Температура <i>p-п</i> перехода	+160 °C
Тепловое сопротивление переход — корпус	0,96 °C/Βτ
Тепловое сопротивление переход — корпус в динами-	
ческом режиме.	0,61 °C/ B τ
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\kappa} =$
	=+125 °C

 $^{^{\}rm I}$ При $T_{\rm K}\!>\!+50\,^{\rm o}{\rm C}$ постоянная рассеиваемая мощность коллектора определяется из выражения


$$P_{K, \text{ Make}}, B_{T} = \frac{160 - T_{K}}{0.96}$$

$$P_{K, cp, Makc}, B_T = \frac{160 - T_K}{0.61}.$$

 $^{^{2}}$ При $T_{\rm K} > +50$ °C

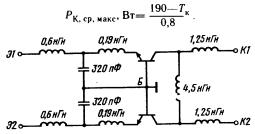


Принципиальная электрическая схема транзисторной сборки 2Т9128AC

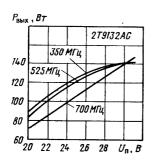
Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания

2T9132AC

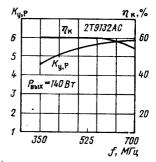
Сборка из двух кремниевых эпитаксиально-планарных структуры п-р-п генераторных транзисторов. Предназначена для применения в двухтактных широкополосных усилителях и генераполосе частот 700 МГц в схеме ОБ при напряжении питания 30 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Сборка содержит внутренние согласования по Тип прибора указывается на корпусе. Масса сборки не более 7 г.


Выходная мощность в двухтактной схеме на частоте $f=650~{\rm M}\Gamma_{\rm L}$ при $U_{\rm n}{=}30~{\rm B},~T_{\rm K}{\leqslant}+60~{\rm ^{\circ}C},$ не менее Коэффициент усиления по мощности в двухтактной схеме на частоте $f=650~{\rm M}\Gamma_{\rm L}$ при $U_{\rm n}{=}30~{\rm B},~P_{\rm вых}{=}$	140 Вт
схеме на частоте $f = 0.00$ км д кри $r_{\rm H} = 0.00$ к, $r_{\rm B} = 140$ Вт, $T_{\rm K} = +60$ °C, не менее . Коэффициент полезного действия в двухтактной схеме на частоте $f = 650$ МГц при $U_{\rm H} = 30$ В, $P_{\rm BMX} = 10.00$	3,5
=140 Вт, $T_{\kappa} \le +60$ °C, не менее	55 %
частоте при U_{K3} =10 В, I_{K} =5 А, f =100 МГц, не менее Критический ток для каждого транзистора при U_{K3} =10 В, f =100 МГц, не менее	3,2 13• A
Разность токов эмиттера в сборке, не более	1,5 A
кой частоте при $U_{\rm KB}{=}5$ В, $I_{\rm 3}{=}5$ А, $f{=}5$ МГц, не более	20 пс
не более	170 пФ 150 мА 75 мА
Oopathin tok smuttepa tiph 036=4 D, he oonee	10 MA

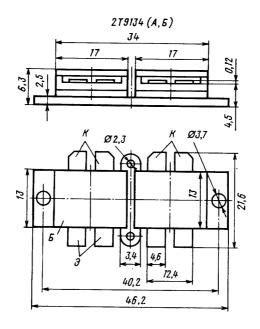
Примечание. Для $I_{{
m K}{
m B}0}$, $I_{{
m 9}{
m B}0}$ приведены суммарные значения двух параллельно включенных транзисторов.


Предельные эксплуатационные данные

предельные эксплуатационные данные	
Постоянное напряжение питания	50 B
Постоянное напряжение эмиттер — база Постоянный ток коллектора для двух транзисторов	4 B 11,2 A
Импульсный ток коллектора для двух транзисторов при $t_{\rm H}{=}250$ мкс, $Q{=}10$	22 A
Импульсная рассеиваемая мощность коллекторов при $t_{\rm H}$ = 250 мкс, Q = 10, $T_{\rm K}$ \leqslant +105 °C .	220 Вт
Средняя рассеиваемая мощность коллекторов в динамическом режиме при $T_{\rm K} = -60 ^{\circ}{\rm C}_{-} + 60 ^{\circ}{\rm C}_{-}$	163 Вт
Тем пература <i>p-п</i> перехода	$-60 ^{\circ}\text{C}T_{\text{K}} =$ = $+125 ^{\circ}\text{C}$
****	=+125 C


При $T_{\rm K}\!\!>\!\!+60\,^{\rm o}{\rm C}$ средняя рассеиваемая мощность коллектора определяется из выражения

Принципиальная электрическая схема транзисторной сборки 2Т9132АС


Зависимости выходной мощности от напряжения питания

Зависимости коэффициента усиления и коэффициента полезного действия коллектора от частоты

2T9134A, 2T91345

Сборка из двух кремниевых эпитаксиально-планарных структуры п-р-п генераторных транзисторов. Предназначена для применения в усилителях мощности и генераторах в схеме ОБ В диапазоне частот 0,6...1,5 ГГц при напряжении питания 45 В. Каждый транзистор содержит внутренние согласующие цепи. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип сборки указывается на корпусе. Масса сборки не более 25 г.

Onen, pri recime inspanie, pa		
Шипульсная выходная мощность в двухтактной схеме на частоте $f=1,5$ ГГц при $U_{\rm n}=45$ В, $t_{\rm H}=10$ мкс, $Q=100$, $T_{\rm K} \leqslant +25$ °C, не менее:		
$Q=100$, $P_{\rm K}=250$ С, не менее. 2Т9134A при $P_{\rm Bx}=250{\rm Br}$		
2Т9134Б при $P_{\rm BX} = 200$ Вт		
$P_{\text{px}} = 100 \text{ Br} \dots \dots \dots$	440 BT	
Коэффициент усиления по мощности в двухтактной схеме на частоте $f=1,5$ ГГц при $U_n=45$ В, $t_n=10$ мкс,		
$Q=100, T_{K} \le +25 ^{\circ}\text{C}$, He MeHee:	•	
2Т9134А при $P_{\rm BX} = 250 \rm Br$	6 дБ	
$P_{\rm BX}^{\rm SM} = 125 {\rm Bt} $	6,4 дБ	
2Т9134Б при $P_{\text{вх}}{=}200$ Вт	6 дБ	
$P_{\rm BX} = 100 \text{Br} \dots \dots \dots$		
Коэффициент полезного действия в двухтактной схеме на частоте $f=1,5$ $\Gamma\Gamma$ ц при $U_{\rm H}=45$ B, $t_{\rm H}=10$ мкс,		
$Q=100$, T_{κ} ≤+25 °C, не менее	30 %	
Об ратный ток коллектора при $U_{\rm KB} = 50$ В, не более:		
$T_{\kappa} = +25 ^{\circ}\text{C}$	120 mA	
$T_{\kappa} = +125$ и -60 °C	180 mA	
Обратный ток коллектор — эмиттер при $U_{\rm K3} = 45$ В,		
же более:		
при $T_{\rm K} = +25$ °C:	160 MA	
2T9134A	120 mA	
при $T_{\kappa} = +125$ и -60 °C:		
2T9134A	200 mA	
2Т9134Б	150 мА	
	120 мА	
$T_{\kappa} = +25 ^{\circ}\text{C}$	180 mA	
1k—+120 n 00 C	100 mil	
Предельные эксплуатационные данные		
Постоянное напряжение коллектор — база	50 B	
Постоянное напряжение эмиттер — база	3 B	
Импульсный ток коллектора при $t_{\rm H} = 10$ мкс, $Q = 100$:		
2T9134A	78 A	
2Т9134Б	63 A	
$t_{\rm H}=10$ mKc, $Q=100$, $T_{\rm K}\leqslant +85$ °C:	,	
2T9134A	2600 Вт	
2Т9134Б	2100 Вт	
Температура <i>р-п</i> перехода	+190°C	
температура окружающей среды	$=+125 {}^{\circ}\text{C}$	

 $^{^{\}rm 1}$ При $T_{\rm K}\!\!\leqslant\!+85\,^{\rm o}{\rm C}$ импульсная рассеиваемая мощность коллектора определяется из выражения

$$P_{K, H, MAKC}, BT = \frac{105}{R_{T(\Pi - K)}}$$

При
$$T_{\rm K} > +85$$
 °C $P_{\rm K, \, M, \, MaKe}$, $B_{\rm T} = \frac{190 - T_{\rm K}}{R_{\rm T} \, (n-{\rm K})}$,

где

$$R_{T(n-\kappa)}$$
, °C/Bт= $\frac{0.5}{Q}$ +0.012 (1- $\frac{0.86}{\sqrt{Q}}$) $\sqrt{t_{\rm M}}$ для 2Т9134A,

$$R_{T(\pi-\kappa)}$$
, °C/Br = $\frac{0.6}{Q}$ +0.015 $\left(1-\frac{0.86}{\sqrt{Q}}\right)\sqrt{t_{\rm H}}$ для 2Т9134Б.

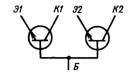
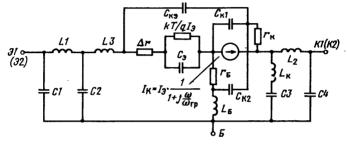
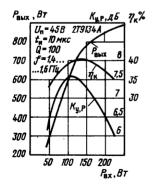
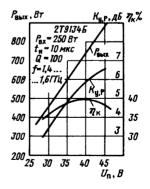
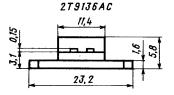




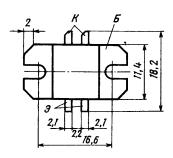
Схема соединения электродов с выводами 2T9134 (A, Б)



Эквивалентная схема замещения транзисторов 2T9134 (A, Б) в активном режиме:

 $LI = L_{_{3}} = 0.06 \text{ hFh}, \ L_{_{6}} = 0.02 \text{ hFh}, \ L_{_{K}} = 0.12 \text{ hFh}, \ L_{2} = 0.18 \text{ hFh}, \ L_{1} = 8...9 \text{ nΦ}, \ C_{2} = 200 \text{ nΦ}, \ C_{3} = 400 \text{ nΦ}, \ C_{4} = 8...9 \text{ nΦ}, \ C_{_{9}} = 1800 \text{ nΦ}, \ C_{_{K}} = 47 \text{ nΦ}, \ C_{_{K}} = 93 \text{ nΦ}, \ C_{_{K}} = 20 \text{ nΦ}, \ \Delta r = 0.01 \text{ Om}, \ r_{_{K}} = 0.1 \text{ Om}, \ r_{_{K}} = 0.1 \text{ Om}, \ C_{_{K}} = 20 \text{ nΦ}, \ \Delta r = 0.01 \text{ Om}, \ C_{_{K}} = 0.1 \text{ Om}, \ C$

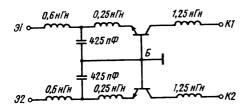

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от входной мощности



Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия коллектора от напряжения питания

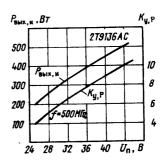
2T9136AC

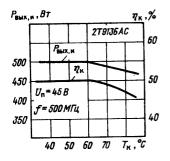
Сборка из двух кремниевых эпитаксиально-планарных структуры n-p-n генераторных транзисторов. Предназначена для применения в импульсных генераторах, усилителях мощности в диапазоне частот 200...500 МГц в схеме ОБ при напряжении питания 45 В. Выпускается в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса сборки не более 7 г.

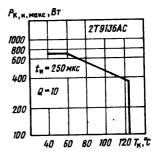

Электрические параметры

Импульсная выходная мощность в двухтактной схеме	
на частоте $f = 500$ МГц при $U_n = 45$ В, $P_{\rm ex} = 71.4$ Вт,	
$T_{\rm H}=250$ MKC, $Q=10$, $T_{\rm K}\leqslant +40^{\circ}{\rm C}$, He MeHee	500 Br
Коэффициент усиления по мощности в двухтактной	
схе ме на частоте $f = 500$ МГц при $U_n = 45$ В, $P_{BX} =$	
=71,4 BT, $t_{\rm H}$ =250 MKC, Q =10, $T_{\rm K} \le +40$ °C, He MeHee	7
Коэффициент полезного действия в двухтактной	
схеме на частоте $f=500$ МГц при $U_a=45$ В,	
$P_{BX} = 71.4$ Bt, $t_{H} = 250$ MKC, $Q = 10$, $T_{K} \le +40$ °C,	
ne menee	45 %
Модуль коэффициента передачи тока на высокой	0
частоте при $U_{K3} = 10 \text{ B}, I_{K} = 5 \text{ A}, f = 100 \text{ М} \Gamma \mu$, не менее	3
Критический ток для каждого транзистора при	10.1
$U_{K3}=10 \text{ B}, f=100 \text{ M}\Gamma\text{ц}, \text{ не менее}$	18 A
Постоянная времени цепи обратной связи на высо-	
кой частоте при $U_{\rm KB} = 5$ В, $I_{\rm 3} = 0.5$ А, $f = 5$ МГц,	00 -
не более	20 пс
Емк ость коллекторного перехода при $U_{\rm KB}{=}45~{\rm B},$ не бо лее	260 пФ
Емкость эмиттерного перехода при U_{96} =0, не более	3100 пФ
Officerus and respondent to the conference of th	
Обратиый ток коллектора при $U_{\rm KB}{=}60~{\rm B},$ не более	140 мА
Обратный ток коллектор — эмиттер при U_{K9} = 45 B,	
не более	100 мА
\mathbf{O} братный ток эмиттера при $U_{\mathbf{O}\mathbf{B}} = 4\mathrm{B}$, не более	100 MA

 Π римечание. Для $I_{
m KB0}$, $I_{
m KBK}$, $I_{
m 2B0}$ приведены суммарные значения двух параллельно включенных транзисторов.

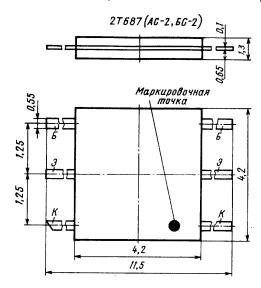

Предельные эксплуатационные данные


Постоянное напряжение коллектор — база	60 B 4 B
Импульсный ток коллектора для двух транзисторов при $t = 250$ мкс. $Q = 10$	
Импульсная рассеиваемая мощность коллекторов при $t = 250$ мкс $Q = 10$ $T_{-} = +60$ °C.	250 Вт
Температура р-п перехода	+200 C


Принципиальная электрическая схема транзисторной сборки 2T9136AC

Зависимости импульсной выходной мощности и коэффициента усиления от напряжения питания

Зависимости импульсной выходной мощности и коэффициента полезного действия коллектора от температуры корпуса



Зависимость максимально допустимой импульсной рассеиваемой мощности коллектора от температуры корпуса

Транзисторы р-п-р

2Т687АС-2, 2Т687БС-2

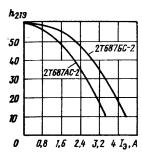
Сборки из двух кремниевых эпитаксиально-планарных структуры *p-n-p* переключательных транзисторов. Предназначены для применения в импульсных линейных усилителях и преобразователях. Бескорпусные, в керамическом кристаллодержателе, с защитным покрытием с гибкими выводами. Сборки маркируются цветными точками: 2T687AC-2 — черной, 2T687БС-2 — белой. Тип сборки указывается в этикетке. Масса сборки не более 3 г.

Электрические параметры

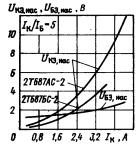
Статический коэффициент передачи тока в схеме ОЭ при $U_{\rm KB} = 5$ В, $t_{\rm H} = 30$ мкс, $Q = 100$:	
при I_9 =0,3 A	
при I_3 =3,5 A, не менее	
настоте при $U_{\rm KB}{=}5$ В, $I_{\rm S}{=}1$ А, $f{=}300$ МГц Напряжение насыщения коллектор — эмиттер при	1,5*2*5,5*
$K=300 \text{ MA}, I_{B}=60 \text{ MA}.$	
при $T_{\rm K} = +25 ^{\circ}{\rm C}$:	0.0* 0.4* 1.0
2T687AC-2	0,2*0,4*1 B 0,2*0,3*0,8 B
при $T_{\kappa} = +125$ и -60 °C, не более: 2T687AC-2	9 B
2Т687БС-2	1,6 B

Напряжение насыщения база — эмиттер при $I_{\rm K} = = 300$ мА, $I_{\rm B} = 60$ мА	0,95*1,1* 1,2* B
Время включения при $I_{\rm K} = 1$ А, $I_{\rm K}/I_{\rm B} = 5$, типовое значение	8* нс
Время рассасывания при $I_K=1$ А, $I_K/I_B=5$, типовое значение	70* нс
Время спада при $I_{\rm K}{=}1$ А, $I_{\rm K}/I_{\rm B}{=}5$, типовое значение	6* нс
Обратный ток коллектора при $U_{\rm KB}{=}50~{\rm B}$:	0,001*0,5*
$T_{\kappa} = +25 ^{\circ}\text{C}$	2 mA
$T_{\rm K} = +125$ и -60° С, не более	5 мА
$T_{\kappa} = +25 ^{\circ}\text{C}$	0,001*0,5* 5 mA
$T_{\rm K}{=}{+}125$ и ${-}60{}^{\circ}{\rm C}$, не более	10 м A 20* 25*40* пФ
Емкость эмиттерного перехода при U_{96} =10 В	40*60*80* пФ
Предельные эксплуатационные данн	
	a.c
Постоянное напряжение коллектор — база: 2T687AC-2 2T687БC-2 Постоянное напряжение коллектор — эмиттер при	70 B 60 B
2T687AC-2	70 B 60 B
2T687AC-2 2T687БС-2 Постоянное напряжение коллектор — эмиттер при R_{69} =100 Ом: 2T687AC-2	70 B 60 B 60 B 50 B 3 B
2T687AC-2 2T687БС-2 Постоянное напряжение коллектор — эмиттер при R_{69} = 100 Ом: 2T687AC-2 2T687БС-2 Постоянное напряжение база — эмиттер	70 B 60 B 60 B 50 B
27687AC-2 $27687BC-2$	70 B 60 B 50 B 3 B 1,5 A
27687AC-2 $27687BC-2$ $1000000000000000000000000000000000000$	70 B 60 B 50 B 3 B 1,5 A 3,5 A
27687AC-2 $27687BC-2$	70 B 60 B 50 B 3 B 1,5 A
27687AC-2 $27687BC-2$	70 B 60 B 50 B 3 B 1,5 A 3,5 A 4,5 A 0,3 A
27687AC-2 $27687BC-2$	70 B 60 B 50 B 3 B 1,5 A 3,5 A 4,5 A 0,3 A
27687AC-2 $27687BC-2$	70 B 60 B 50 B 3 B 1,5 A 3,5 A 4,5 A 0,3 A 1,5 BT +150 °C

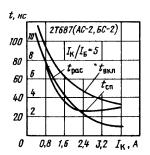
 $T_{\rm K} > 50~{\rm ^{\circ}C}$ постоянная рассеиваемая мощность коллектора определяется из выражения $P_{\rm K,\ Makc}, {\rm BT} = \frac{150-T_{\rm K}}{67}$.

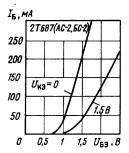

При монтаже сборки в гибридную схему рекомендуется приклеивать основание кристаллодержателя к теплоотводящей поверхности монтажной платы теплопроводящим клеем УП-5-207М ТУ6-05-241-208-79. Перед нанесением клея кристаллодержатель сборки и монтажная плата должны быть прогреты при +60 °C в течение 6 мин. Клей должен быть нанесен тонким равномерным слоем. Соединение склеиваемых поверхностей производить прижатием так, чтобы избыток клея равномерно выступал из-под основания. После приклеивания должна производиться подсушка при +120 °C в течение 2 ч. при +150 °C в течение 2 ч.

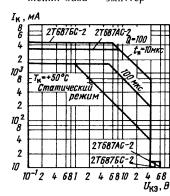
Разрешается производить монтаж сборки в гибридную схему припайкой металлизированного основания кристаллодержателя к теплоотводящей поверхности при температуре припоя не выше $+180\,^{\circ}\mathrm{C}$ или при $+200\,^{\circ}\mathrm{C}$ в течение не более 3 мин.


Изгиб выводов допускается на расстоянии не ближе 2 мм от кристал-

лодержателя с радиусом закругления 1,5...2 мм.

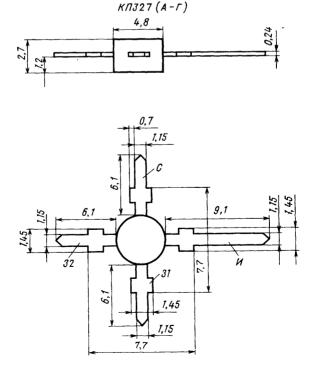

Присоединение выводов в аппаратуре осуществляется методом сварки или бесфлюсовой пайки. Минимальное расстояние места присоединения вывода от кристаллодержателя 0,5 мм. Пайка производится при температуре +180 °C в течение не более 3 с.


Зависимость статического коэффициента передачи тока от тока эмиттера


Зависимости напряжений насыщения коллектор — эмиттер и база — эмиттер от тока коллектора

Зависимости времени включения, рассасывания и спада от тока коллектора

Зависимости тока базы от напряжения база — эмиттер

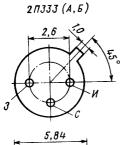


Области безопасной работы транзисторов

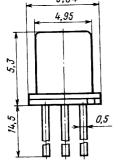
СПРАВОЧНЫЕ ДАННЫЕ ПОЛЕВЫХ ТРАНЗИСТОРОВ

КП327А, КП327Б, КП327В, КП327Г

Транзисторы кремниевые планарные полевые с двумя изолированпыми затворами, имеющими защитные диоды, с каналом *п*-типа. Предназначены для применения в селекторах каналов телевизионных приемников. Выпускаются в пластмассовом корпусе с гибкими выводами. Маркируются цветными точками: КП327А — одной белой, КП327Б — двумя белыми, КП327В — одной красной, КП327Г — двумя красными. Тип прибора указывается в этикетке. Масса транзистора не более 0,3 г.


Қоэффициент шума при $U_{\text{CH}} = 10 \text{ B}, U_{32\text{H}} = 4 \text{ B},$	
КПЗ27Б на частоте f =200 МГц КПЗ27В на частоте f =800 МГц КПЗ27Г на частоте f =200 МГц	3,9 дБ 2,8 дБ 4,5 дБ 3 дБ
$U_{32\mathrm{M}}\!=\!4$ В, $I_{\mathrm{C}}\!=\!10$ мА, не менее: КП327А на частоте $f\!=\!800$ МГц	13 дБ 19 дБ
при $U_{\text{СИ}} = 10$ В, $U_{32\text{И}} = 4$ В, $I_{\text{С}} = 10$ мА, не менее: КП327В на частоте $f = 800$ МГц	12 дБ 18 дБ
$U_{\text{СИ}} = 10 \text{ B}, U_{32\text{M}} = 4 \text{ B}, I_{\text{C}} = 10 \text{ мA}, \text{не более:} \ \text{КП327A на частоте } f = 800 \text{МГц}$	30 дБ 25 дБ
$U_{32\text{M}}\!=\!+42$ В, не более: КП327А на частоте $f\!=\!800$ МГц КП327Б на частоте $f\!=\!200$ МГц	40 дБ 40 дБ
$T = +25 \text{ m} -45 \text{ °C} \dots \dots$	9,5 mA/B 8 mA/B
Пробивное напряжение защитных диодов затворов I и 2 при $I_{31\text{N}} = I_{32\text{N}} = 10$ мА	618 B
при $T=+25^{\circ}\text{C}$, $U_{\text{CM}}=10\text{B}$: КП327А, КП327Б	0,517 мА 17 мА
КП327А, КП327Б	0,517 мА 17 мА 20 мА
$=U_{32\text{M}}=\pm 5$ В, не более	50 нА
Емкость затвор — исток при $U_{\text{СИ}} = 10 \text{B}, U_{32\text{H}} = -2 \text{B},$	•
$U_{31\text{M}}$ =0: KП327A	1,32,3 пФ 1,53 пФ 2,5 пФ 3,6 пФ
U _{31И} =0, не более: КП327А	1,6 пФ

Предельные эксплуатационные данные


Постоянное напряжение сток — исток	14 B
Постоянное напряжение затвор $1, 2$ — исток	5 B
Постоянное напряжение затвор 1, 2 — сток	16 B
Постоянный ток затвора 1, 2	10 mA
Постоянный ток стока	30 MA
Постоянный ток стока	00
Постоянная рассеиваемая мощность при $T = -45$	200 vBr
+60 °C	45 195°C
Температура окружающей среды	-45+65 C

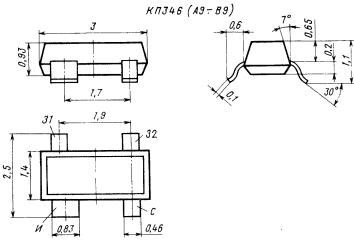
 $^{^{1}}$ При $T>+60\,^{\circ}$ С $P_{\rm макс}$ уменьшается на 2,5 мВт/ $^{\circ}$ С.

2ПЗЗЗА, 2ПЗЗЗБ

Транзисторы кремниевые планарные полевые с каналом *n*-типа и затвором в виде обратносмещенного *p-n* перехода. Предназначены для применения в усилителях низкой частоты. Выпускаются в металлостеклянном корпусе с гибкими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 0,5 г.

Электрические параметры

ЭДС шума на частоте f =75 Гц при $U_{\rm CM}$ =10 $I_{\rm C}$ =10 мА, не более	 20 н $B/\sqrt{\Gamma \mu}$
не менее: при $T = +25$ и -60 °C: $2\Pi 333 \text{A}$	 4 мА/В 2 мА/В
при <i>T</i> =+125 °C: 2П333A	 2 мА/В 1,2 мА/В

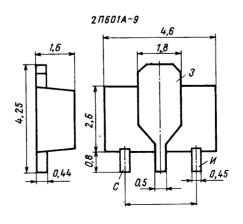

Напряжение отсечки при $U_{\rm CM}$ =10 В, $I_{\rm C}$ =10 мкА: 2П333А	18 B 4 B 10 ⁻⁶ A
при $T = +25$ и $-60^{\circ}\mathrm{C}$: $2\Pi 333\mathrm{A}$	$2 \cdot 10^{-10} \text{ A}$ $1 \cdot 10^{-7} \text{ A}$
211333A	1·10 ⁻⁰ A
при U_{CM} =0,5 В, U_{3M} =0, не более	1,5 кОм
не более	6 пФ
Предельные эксплуатационные данны	
	ae
Постоянное напряжение сток — исток:	
Постоянное напряжение сток — исток:	50 B
Постоянное напряжение сток — исток: 2П333A 2П333Б	50 B
Постоянное напряжение сток — исток: 2П333A	50 B 40 B
Постоянное напряжение сток — исток: 2П333A	50 B 40 B 50 B
Постоянное напряжение сток — исток: 2П333A 2П333Б Постоянное напряжение затвор — сток: 2П333A 2П333Б	50 B 40 B 50 B
Постоянное напряжение сток — исток: 2П333A 2П333Б Постоянное напряжение затвор — сток: 2П333A 2П333Б Постоянное напряжение затвор — исток:	50 B 40 B 50 B 40 B
Постоянное напряжение сток — исток: 2П333A 2П333Б Постоянное напряжение затвор — сток: 2П333A 2П333Б Постоянное напряжение затвор — исток: 2П333A	50 B 40 B 50 B 40 B .
Постоянное напряжение сток — исток: 2П333A 2П333Б Постоянное напряжение затвор — сток: 2П333A 2П333Б Постоянное напряжение затвор — исток: 2П333A 2П333A 2П333A	50 B 40 B 50 B 40 B .
Постоянное напряжение сток — исток: $2\Pi 333A \\ 2\Pi 333B \\$	50 B 40 B 50 B 40 B
Постоянное напряжение сток — исток: $2\Pi 333A$	50 B 40 B 50 B 40 B 45 B 35 B
Постоянное напряжение сток — исток: $2\Pi 333A$ $2\Pi 333B$	50 B 40 B 50 B 40 B . 45 B 35 B 0,25 Br +150 °C
Постоянное напряжение сток — исток: $2\Pi 333A$	50 B 40 B 50 B 40 B . 45 B 35 B 0,25 Br +150 °C 500 °C/Br

 $^{^1}$ При $T{>}{+}25\,^{\circ}\mathrm{C}$ постоянная рассеиваемая мощность определяется из выражения

$$P_{\text{Make}}, B_{\text{T}} = \frac{150 - T}{500}.$$

КП346А9, КП346Б9, КП346В9

Транзисторы кремниевые планарные полевые с двумя изолированными затворами, имеющими защитные диоды, с каналом *п*-типа. Предназначены для применения в селекторах каналов метрового и дециметрового диапазонов длин волн телевизионных приемников. Выпускаются в пластмассовом корпусе с жесткими выводами. Маркируются цветными точками: КП346A9 — белой, КП346Б9 — желтой. Тип прибора указывается в этикетке. Масса транзистора не более 0,2 г.

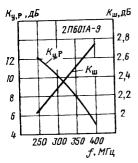

Коэффициент шума при $U_{\rm CH}{=}10$ В, $U_{\rm 32H}{=}4$ В,	
$I_{C} = 10$ мA, не более:	
КП346A9 на частоте f =800 МГц	3,5 дБ
$K\Pi 346 B9$ на частоте $f = 800$ $M\Gamma_{\rm H}$	4,5 дБ
КП346В9 на частоте <i>f</i> =200 МГц	
Коэффициент усиления по мощности при $U_{\text{CM}} = 10 \text{ B}$.	ι,5 μΒ
U_{32M} =4 В, $I_{\rm C}$ =10 мА, не менее:	
КП346A9 на частоте j=800 МГц	15.7B
K11340A9 H2 42CTOTE /= 000 MT u	13 75
КП346Б9 на частоте j=800 МГц	дд дБ Эв. дБ
КП346В9 на частоте <i>j</i> =200 МГи	21 70
Коэффициент обратной передачи напряжения при	
$U_{\text{CH}} = 10 \text{ B}, U_{32\text{H}} = 4 \text{ B}, I_{C} = 10 \text{ MA}, \text{ He MeHee:}$	20 - 45
$K\Pi 346A9$ на частоте $f = 800 \ M\Gamma$ ц.	30 дЬ
КП346В9 на частоте $j=200$ МГи	25 дБ
Глубина регулирования успления при $U_{\rm CH} = 10$ В,	
$U_{31\text{H}} = 4 \text{ B}, I_{\text{C}} = 10 \text{ мA}, U_{32\text{H}} = +4 2 \text{ B}, \text{ не менее:}$	10 E
КП346A9, КП346Б9	40 дБ
КП346В9	50 дБ
Крутизна характеристики при $U_{\rm CH} = 10$ В, $U_{32H} =$	
=4 B, $I_{\rm C}$ =10 mA, не менее:	
при $T = +25$ и 45 °C:	
K11346A9, KI1346B9	12 мА/В
KII346B9	10 мА/В
при $T = +85$ °C:	
KП346A9, КП346Б9	9 мА/В
К П346В9	8 мА/В
Пробивное напряжение защитных диодов затворов	
I и 2 при $U_{\text{CM}} = 0$, $U_{31,2M} = 0$	620 B
Начальный ток стока при $U_{\text{СИ}} = 10 \text{ B}, \ U_{32\text{И}} = 4 \text{ B},$	
$U_{\rm 31M}\!=\!0$, не более:	
T = +25 и $+85$ °С	20 мА
$T = -45 ^{\circ}\text{C}$	

Ток утечки затвора при $U_{\rm CM}{=}0,U_{31\rm M}{=}5{\rm B},U_{32\rm M}{=}0,$ не более	50 нА
$=U_{32\text{M}}=-2$ В, не более: КП346А9, КП346В9	2,6 пФ 3 пФ
$U_{32\mathrm{M}}{=}{-}2$ В, не более: КП346А9, КП346В9	1,3 пФ
$U_{32\mathrm{H}}{=}{-}2$ В, не более: КП346А9, КП346В9	0,035 пФ 0,0 4 5 пФ
Предельные эксплуатационные данни	ые
Постоянное напряжение сток — исток	16 B
+60°C	200 мВт —45+85 °С

 $^{^{1}}$ При T>+60 °С $P_{\text{макс}}$ снижается на 2,5 мВт/°С.

2П601A9

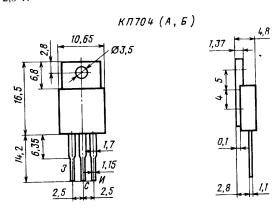
Транзистор кремниевый планарный полевой с затвором в виде обратносмещенного p-n перехода и каналом n-типа. Предназначен для применения во входных и выходных каскадах усилителей и в преобразователях частоты герметизированной аппаратуры. Выпускается в пластмассовом корпусе с жесткими выводами. Тип прибора указывается в этикетке. Масса транзистора не более 0,1 г.



- · · · · · · · · · · · · · · · · · · ·	
Коэффициент шума на частоте $f=400$ М Γ ц при $U_{\rm CM}=10$ В, $I_{\rm C}=20$ м ${\rm A}$	2,6*3*6 дБ
ЭЛС шума на частоте $f=100$ кГц при $U_{CM}=10$ В,	
I _C =20 MA	0,8*1* 2 _H B/√Γ _Ц
Крутизна характеристики при $U_{\rm CM}{=}10$ В, $U_{\rm 3M}{=}0$,	2 113/ 7.14
не менее: $T = +25$ и -60 °C	50 mA/B
$T = +125 ^{\circ}\text{C}$	35 мА/В
Напряжение отсечки при $U_{CM} = 10$ В, $I_{C} = 10$ мкА	412 B
Начальный ток стока при $U_{\rm CM}{=}10~{\rm B},~U_{\rm 3M}{=}0$, не бо-	
лее	400 mA
Ток утечки затвора при $U_{3H} = -15$ В, не более:	
$T = +25 ^{\circ}\text{C}$	1 ⋅ 10 ⁻⁸ A
T = +25 °C	1.10-6 A
I = +125 °C · · · · · · · · · · · · · · · · · ·	
Емкость сток — затвор при $U_{CM} = 10 \text{ B}, U_{3M} = -10 \text{ B},$	
не более	6 пФ
Предельные эксплуатационные данн	ые
Постоянное напряжение сток — исток	
Постоянное напряжение затвор — сток	

	напряжение за					
Постоянное	напряжение за	твор — ис	сток		•	15 B
Постоянный	прямой ток за	твора				5 mA
Постоянная	рассеиваемая м	ощность¹ г	T = T	60 .		
±25 °C						1 Вт
Тепловое сог	ротивление пер	оеход — с	реда .			125 °C/Вт
Температура	окружающей	среды				-60+125 °C

При $T>+25\,^{\circ}\mathrm{C}$ постоянная рассеиваемая мощность определяется из выражения

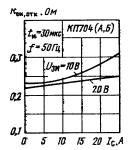

$$P_{\text{Make}}, \text{ Bt} = \frac{150 - T}{125}.$$

Зависимости коэффициента шума и коэффициента усиления от частоты

КП704А, КП704Б

Транзисторы кремниевые эпитаксиально-планарные полевые с изолированным затвором с каналом *п*-типа. Предназначены для применения в быстродействующих импульсных устройствах, в выходных каскадах многоцветных графических дисплеев, в источниках вторичного электропитания. Выпускаются в пластмассовом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 2,5 г.

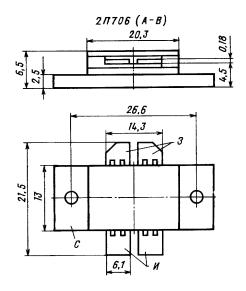
Электрические параметры


Крутизна характеристики при $I_{\mathbb{C}} = 1$ А	10002500 mA/B
Пороговое напряжение при $I_{\rm C} = 10$ мА	1,5*2*4 B
Начальный ток стока при U_{3H} =0, не более:	
при $T = +25$ и 45 °C:	0.8 мА
ҚП704А при $U_{CH}{=}200\;B$	1 мА
КП704Б при $U_{\rm CM} = 200~{\rm B}$	
при $T = +85$ °C, $U_{\text{CM}} = 180 \text{ B}$	1,5 MA
Ток утечки затвора при $U_{3H} = 30 \text{ B}$, не более	l mkA
Сопротивление сток — исток в открытом состоянии	
при $U_{3H} = 15$ В, $I_C = 0.5$ А:	0.9* 0.95*
КП704A	0,35 Ом
К П704Б	
Время включения при R_r =75 Ом, R_H =2 Ом	60*80*100* нс
Время выключения при $R_r = 75 \text{ OM}$, $R_H = 2 \text{ OM}$	60*80*100* нс
Пропольные эксплуатационные данн	Me

Предельные эксплуатационные данные

Постоянное напряжение сток — исток:	
$T_{\nu} = +25 \text{ и} - 45 ^{\circ}\text{C}$	200 B
$T_{\kappa} = +85 ^{\circ}\text{C}$	180 B
Постоянное напряжение затвор — Исток	20 B
Постоянный ток стока	10 A
Постоянная рассеиваемая мощность при $T_{\kappa} = -45$	
+25 °C	75 Bt
$+23$ C $\cdot \cdot $	

Температура кристалла			+150 °C
Тепловое сопротивление кристалл Температура окружающей среды	корпус		8,3 °C/Bτ
температура окружающей среды		 ٠	$=\pm 85 ^{\circ}\text{C}$


¹ При $T_{\rm K}$ >25 °C $P_{\rm Makc}$ снижается линейно до 8 Вт пр $T_{\rm K}$ = +85 °C.

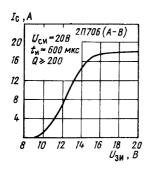
Зависимости сопротивления сток — исток в открытом состоянии от тока стока

2П706А, 2П706Б, 2П706В

Транзисторы кремниевые эпитаксиально-планарные полевые с изолированным затвором и каиалом *п*-типа переключательные. Предназначены для применения в источниках вторичного электропитания, переключающих и импульсных устройствах, ключевых стабилизаторах и преобразователях напряжения, усилителях и генераторах. Выпускаются в металловерамическом корпусе с полосковыми выводами. Тип прибора указывается иа корпусе. Масса транзистора не более 10 г.

Крутизна характеристики при $U_{CH} = 30$ В, $I_{C} = 2$ А,	
не менее	1,5 A/B
Ток стока при $U_{\rm CH}{=}30$ В, $U_{\rm 3H}{=}25$ В, не менее	
Начальный ток стока при $U_{CM}=30$ В, $U_{3M}=0$,	
не более:	
T = +25 и -60 °C	10 mA
T=+125 °C	30 мА
Остаточный ток стока при $U_{\text{СИ}} = U_{\text{СИ, маке}}, \ U_{3\text{М}} =$	00 M71
=—10 В, не более	10 mA
	IU MA
Сопротивление сток — исток в открытом состоя-	
нии при $U_{3M} = 20$ В, $I_C = 1$ А, не более:	0.0.0
$2\Pi 706 \text{Å}$	0,8 Ом
2П706Б	0,5 Ом
2П706В	0,65 Ом
Предельные эксплуатационные данні	ые
Постоянное напряжение сток — исток:	
2П706А	500 B
_ 2П706Б, 2П706В	400 B
Постоянное напряжение затвор — сток:	100 0
2Π706A	510 B
2.1.00/2	OIO D

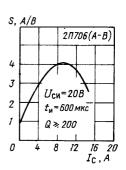
 $-60^{\circ}\text{C...}T_{\text{K}} = +125^{\circ}\text{C}$ $^{\scriptscriptstyle 1}$ При $T_{\scriptscriptstyle
m K}{>}{+}35\,^{\circ}{
m C}$ $P_{\scriptscriptstyle
m Makc}$ снижается линейно до 21 Вт при $T_{\scriptscriptstyle
m K}{=}$ $=+125^{\circ}$ C.


Постоянное положительное и отрицательное напря-

Постоянная рассеиваемая мощность при $T_{\kappa} = -60...$

Тепловое сопротивление структура - корпус .

Температура окружающей среды

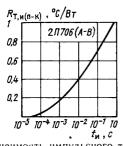

Расстояние от корпуса до начала изгиба вывода не менее 3 мм. Расстояние от корпуса до места лужения и пайки выводов не менее 3 мм, температура припоя не выше +265°C, время пайки не более 3 c.

2П706Б, 2П706В

жение затвор — исток . . .

+35 °C

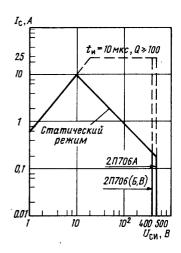
410 B

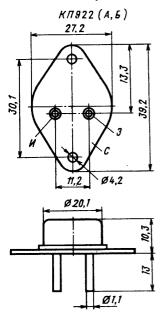

30 B

100 B_T

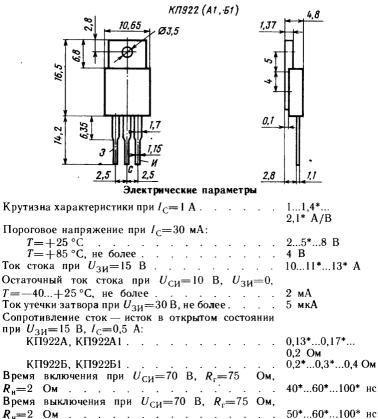
1 °C/Вт

Зависимость тока стока от напряжения затвор -- исток


Зависимость крутизны характеристики от тока стока

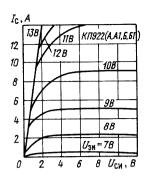

Зависимость импульсного теплового сопротивления структура — корпус от длительности импуль-

$$R_{T,H(\Pi-\kappa)}(Q) = \frac{(1-R_{T,H(\Pi-\kappa)})}{Q} + \frac{1-R_{T,H(\Pi-\kappa)}}{Q}$$


Области безопасной работы транзисторов

КП922А, КП922А1, КП922Б, КП922Б1

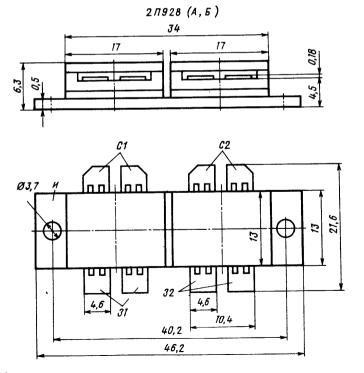
Транзисторы кремниевые эпитаксиально-планариые вые с изолированным затвором и каналом n-типа переключательные. Предназначены для применения в источниках вторичного электропитания, в ключевых стабилизаторах и преобразователях напряжения, переключателях и импульсных устройствах. пускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами (КП922А, КП922Б) и в пластмассовом коржесткими выводами (КП922А1, КП922Б1). Тип прибора указывается на корпусе. Масса транзистора в металличекорпусе не более в пластмассовом — 2,5 г.



1200* пФ

предспывае эксплуатационные данные		
Постоянное напряжение сток — исток		. 100 B
Постоянное напряжение затвор — исток		. ±30 B
Постоянный ток стока		
Импульсный ток стока при $t_u = 1$ мкс, $Q = 80$.		. 20 A
Постоянная рассеиваемая мощность при $T_{\kappa} = -$	-45	5
±35 °C		. 60 Вт
Температура кристалла		+150°C
Тепловое сопротивление кристалл — корпус.		. 2 °C/Вт
Температура окружающей среды		
		=+85 °C

¹ При $T_{\rm K} > +35$ °C $P_{\rm макс}$ снижается линейно до 45 Вт при $T_{\rm K} = +85$ °C.


1500*...1700*...

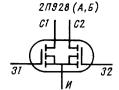
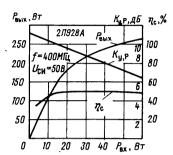
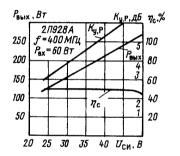
Зависимости тока стока от напряжения сток — исток

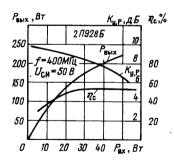
2П928А, 2П928Б

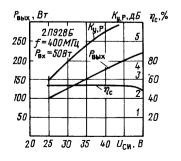
Транзисторы кремниевые эпитаксиально-планарные полевые с изолированным затвором и каналом *п*-типа генераторные. Предназначены для применения в усилителях мощности и генераторах. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 17 г.

participation pa	
Выходная мощность на частоте f =400 МГц при $U_{\text{СИ}}$ =50 В, T_{K} =+25 °C:	
2П928A при Р _{вх} =60 Вт	250265* 280* Вт
2П928Б при Р _{вх} =50 Вт	200220* 240* Вт
Коэффициент усиления по мощности на частоте $f=400~{\rm M}$ Пц при $U_{{\rm CM}}{=}50~{\rm B},~T_{\rm K}{=}+25~{\rm ^{\circ}C}$:	
2П928А при Р _{вых} =250 Вт	67* лБ
$2\Pi 928$ Б при $P_{_{BЫX}}{=}200~\mathrm{Br}$	6*6,4* 6,8* дБ
Коэффициент полезного действия на частоте $f=400~{\rm M}\Gamma_{\rm L}$ при $U_{\rm CM}{=}50~{\rm B},~T_{\rm K}{=}{+}25~{\rm ^{\circ}C}$:	•
$2\Pi 928$ А при $P_{\mathrm{BMX}} {=} 250\mathrm{Br}$	50*53*55* %
Крутизна характеристики при $U_{\text{СИ}}{=}20$ В, $I_{\text{C}}{=}3$ А Ток стока при $U_{\text{СИ}}{=}20$ В, $U_{\text{3M}}{=}20$ В:	11,8*2,3* A/B
2П928А	1621*24* A 1316*18* A
2П928Б	
$T_{\kappa} = +25$ и -60 °C	150 мА
$T_{\rm K}=+125~{\rm ^{\circ}C}$	400 мА
не более	150 мА
при $U_{3H}=20 \text{ B}$, $I_{C}=1 \text{ A}$, типовое значение	0,4* Ом
Емкость затвор — исток при разомкнутом выводе стока и $U_{3\mathrm{M}}{=}10\mathrm{B}$	470*530* 570* пФ
Выходная емкость при $U_{\sf CM}{=}20$ В, $U_{\sf 3M}{=}0$	150*160* 180* пФ
Проходная емкость при $U_{\sf CH}{=}20{\rm B},U_{\sf 3H}{=}0.$	
Примечание. Электрические параметры (кром	ие Р _{вых} , К _{у, Р} иη _с)
указаны для каждой половины транзистора.	
Предельные эксплуатационные данн	ые
Постоянное напряжение сток — исток: 2П928A	50 B
2П928Б	55 B
Постоянное напряжение затвор — сток:	
2П928А	60 B
2П928Б	65 B
—60°С	250 Вт
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\kappa} = +125 ^{\circ}\text{C}$

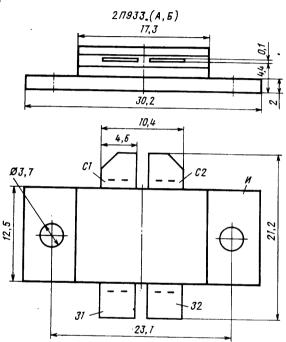
 $^{^{-1}}$ При $T_{\rm K} > 25~{\rm ^{\circ}C}$ $P_{\rm макс}$ снижается линейно до 50 Вт при $T_{\rm K} = +125~{\rm ^{\circ}C}$.


Схема соединения электродов с выводами 2П928 (A, Б)


Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия стока от входной мощности

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия стока от напряжения сток -исток


Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия стока от входной мощности

Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия стока от напряжения сток — исток

2П933А, 2П933Б

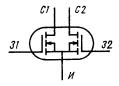
Транзисторы кремниевые эпитаксиально-планарные полевые с изолированным затвором и каналом *п*-типа генераторные. Предназначены для применения в линейных и широкополосных усилителях мощности и генераторах с высокой стабильностью частоты на частотах до 1 ГГц. Выпускаются в металлокерамическом корпусе с полосковыми выводами. Тип прибора указывается на корпусе. Масса транзистора не более 9 г.

Электрические параметры

Выходная мощность в двухтактной схеме на часто-	
те $f=1$ ГГц при $U_{CH}=45$ В, $P_{BX}=30$ Вт, $T_{K}=+25$ °C:	
2П933A	7075*78*
Коэффициент полезного действия в двухтактной схе-	000409
ме на частоте $f=1$ ГГц при $U_{CM}=45$ В, $P_{n,r}=30$ Вт.	
$T_{\kappa} = +25 ^{\circ}\text{C}$, не менее:	
2П933А	30 %
2119330	28 %
крутизна характеристики при $U_{\rm CH} = 20$ В, $I_{\rm C} = 2$ А,	
$t_{\rm H}$ =60 мкс, Q =200, не менее:	
при $T_{\kappa} = +25$ и -60 °C:	
2Й933А	650 мА/В
2П933Б	550 мА/В

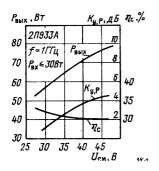
Вт Вт

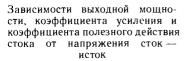
при <i>T_K</i> =+125 °C: 2П933A	500 мА/В 450 мА/В
Ток стока при $U_{\text{СИ}} = 20 \text{ B}$, $U_{\text{ЗИ}} = 20 \text{ B}$, $t_{\text{н}} = 60 \text{ мкс}$,	
Q = 200:	,
при <i>T_K</i> =+25 °C: 2П933A	912*15* A
2П933Б	7,58*9* A
при $T = -60 ^{\circ}\text{C}$, не менее:	Q A
2П933A	7,5 A
при $T_k = +125 ^{\circ}\text{C}$, не менее:	C F A
2П933A	5,5 A 5,5 A
Начальный ток стока при $U_{\text{СИ}} = 20$ В, $U_{\text{3H}} = 0$,	
не более: $T_{\kappa} = +25 \text{ и} -60 \text{ °C}$	75 мА
$T_{\nu} = +125 ^{\circ}\text{C}$	200 мА
Остаточный ток стока при $U_{\text{СИ}} = 45 \text{ B}, U_{3\text{И}} = -10 \text{ B},$	
не более	75 мА
Ток утечки затвора при $U_{3N} = -20$ В, $U_{CN} = 0$, не более	2,5·10 ⁻⁷ A
F_{MKOCTE} 3ATBOD — MCTOK IDM $U_{3M}=10$ B, TMHOBOC	210* пФ
Примечание. Электрические параметры (кром	ıe Р_{вых} и η) указань

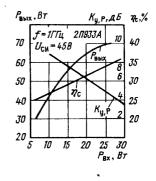

Примечание. Электрические параметры (кроме $P_{\mathrm{вых}}$ и η) указань для одного транзистора.

Предельные эксплуатационные данные

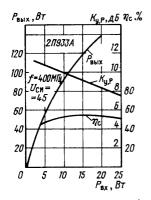
Постоянное напряжение затвор — нсток	20 B
Постоянное напряжение затвор — сток	55 B
Постоянная рассеиваемая мощность при $T_{\kappa} = -60$	
+35 °C	160 Вт
Температура окружающей среды	$-60 ^{\circ}\text{C} T_{\kappa} =$
	$=125 {}^{\circ}\text{C}$

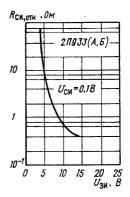

¹ Прн $T_{\rm K}$ >+35 °C $P_{\rm макс}$ снижается линейно до 30 Вт при $T_{\rm K}$ = =+125 °C.


Расстояние от места пайки выводов до корпуса не менее 2 мм, температура припоя не выше $+260\,^{\circ}$ С, время пайки не более 3 с. Допускается пайка выводов на расстоянии не менее 1 мм от корпуса; при этом температура пайки не должна превышать $+150\,^{\circ}$ С, время пайки не более 3 с.

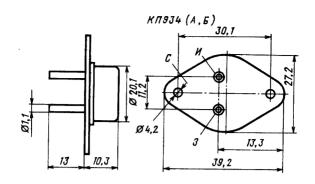


Постоянное напряжение сток — исток


Схема соединения электродов с выводами 2П933 (A, Б)

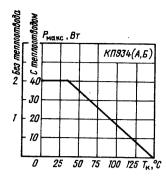


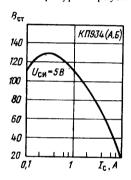
Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия стока от входной мощности


Зависимости выходной мощности, коэффициента усиления и коэффициента полезного действия стока от входной мошности

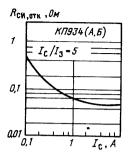
Зависимость сопротивления сток — исток в открытом состоянии от напряжения затвор — исток

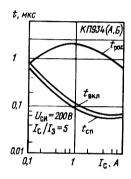
КП934А, КП934Б


Транзисторы кремниевые планарные полевые со статической индукцией и каналом п-типа. Предназначены для применения в источниках вторичного электропитания, в высоковольтных ключевых устройствах. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

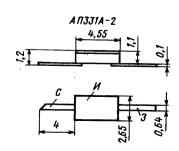

Статический коэффициент передачи тока при $U_{ extsf{CH}} =$	
$=5$ B, $I_{C}=5$ A	1020*80*
Ток утечки сток — исток при R_{3N} =300 Ом, не более:	
T=+25 °C	3 mA
T=+85 °C ·	5 мА
Ток утечки затвора при U_{3H} = -5 В, не более:	
T=+25 °C	3 мА
T=+85 °C	5 мА
Сопротивление сток — исток в открытом состоянии	
при $I_C=5$ A, $I_3=1$ A	
Время включения при $U_{\text{СИ}} = 200 \text{ B}, I_{\text{C}} = 5 \text{ A}, I_{\text{3}} = 1 \text{ A}$	0,1 Om
Dream brond tellar inph o CN = 200 B, 1 C = 0 A, 13 = 1 A	0,060,07
Время рассасывания при $U_{\rm CH}{=}200$ В, $I_{\rm C}{=}5$ А,	,
$I_3=1$ A	
Время спада при $U_{\rm CH}$ =200 В, $I_{\rm C}$ =5 А, $I_{\rm 3}$ =1 А	2,5 mkc 0,02*0,06*
,	0,1 мкс

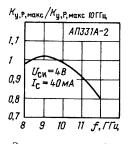
Предельные эксплуатационные данные


тредения видинуили данные данные
Постоянное напряжение сток — исток:
КП934A
K11934b 300 B
Постоянное напряжение затвор — исток 5 В
Постоянный ток стока
Импульсный ток стока при $t_{\rm H} = 10$ мкс, $Q = 2$ 15 A
Постоянный ток затвора 2 А
Импульсный ток затвора при $t_{\rm H} = 10$ мс, $Q = 2$. 3 A
Постоянная рассеиваемая мощность при $T_{\kappa} = +25 ^{\circ}\text{C}$:
с теплоотводом
без теплоотвода 2 Вт
Температура окружающей среды -45° С T_{κ} =
=+85 °C


Зависимость максимально допустимой рассеиваемой мощности от температуры корпуса

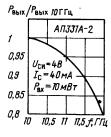
Зависимость статического коэффициента передачи тока от тока стока


Зависимость сопротивления сток исток в открытом состоянии от тока стока

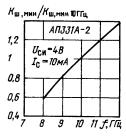

Зависимости времени включения, рассасывания и спада от тока стока

АПЗЗ1А-2

Транзистор арсенидогаллиевый полевой усилительный с барьером Шотки и каналом *п*-типа. Предназначен для применения в широкополосных усилителях герметизированной аппаратуры. Выпускается в металлокерамическом кристаллодержателе. Тип прибора указывается в этикетке. Масса транзистора не более 0,1 г.



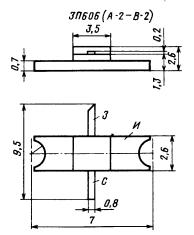
Минимальный коэффициент шума на частоте f=	
$=10$ ГГц при $U_{\rm CH}=4$ В, $I_{\rm C}=10$ мА, не более	2,5 дБ
Коэффициент шума на частоте $f=10$ $\Gamma\Gamma_{\text{Ш}}$ при	
$U_{\rm CH} = 4$ В, $I_{\rm C} = 40$ мА, не более	4,5 дБ
Максимальный коэффициент усиления по мощности	
на частоте $f=10$ ГГц при $U_{CH}=4$ В, $I_{C}=40$ мА,	
	8 дБ
Оптимальный коэффициент усиления по мощности	
на частоте $f=10$ ГГц при $U_{\text{СИ}}=4$ В, не менее:	
$I_{\rm C}=40$ MA	6,5 дБ
$I_{\rm C}=10~{\rm mA}$	5,5 дБ
Выходная мощность на частоте $f=10$ $\Gamma\Gamma$ ц при	
$U_{\text{СИ}} = 4 \text{ B}, I_{\text{C}} = 40 \text{ мA}, P_{\text{BX}} = 10 \text{ мВт, не менее}$	30 мВт
Крутизна характеристики при U_{CM} =4 В, I_{C} =40 мА,	
не менее	15 mA/B
Ток утечки затвора при $U_{ m 3H}{=}-2,5$ В, не более:	•
T = +25 и -60 °C	1 мкА
T=+85 °C	10 мкА
	
Предельные эксплуатационные данны	
Постоянное напряжение сток — исток	
Постоянное напряжение затвор — сток	
Постоянное напряжение затвор — исток	
Постоянная рассеиваемая мощность	200 мВт
Постоянная СВЧ мощность, падающая на вход тран-	
зистора	200 мВт



Температура окружающей среды .

Зависимость коэффициента усиления от частоты

Зависимость выходной мощности от частоты



-60...+85 °C

Зависимость коэффициента шума от частоты

3П606А-2, 3П606Б-2, 3П606В-2

Транзисторы арсенидогаллиевые планарные полевые с барьером Шотки и каналом п-типа генераторные. Предназначены для применения в усилителях мощности, автогенераторах, преобразователях частоты на частотах до 12 ГГц в герметизированной аппаратуре. Бескорпусные, с гибкими выводами, на металлокерамическом кристаллодержателе. Маркируются точками: 3П606А-2 — одной черной, 3П606Б-2 — двумя 3П606В-2 — тремя черными, черными. Масса транзистора не более 0,2 г.

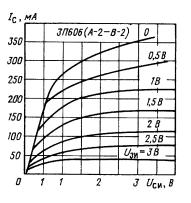
Электрические параметры

Выходная мощность на част оте $f = 12$ ГГц при $U_{\text{СИ}} = 8$ В, $T_{\text{K}} = +25$ °С, не менее:	
3П606А-2 при Р _{вх} =0,16 Вт	0,4 Вт
311606 Б-2 при $P_{\rm BX}$ =0,1 Вт	0.4 Вт
3П606В-2 при Р _{вх} =0,24 Вт	0.75 Вт
Коэффициент усиления по мощности на частоте $f=12$ ГГ μ , $T_{\kappa}=+25$ °C, не менее:	-,
при $U_{\text{CM}} = 8 \text{ B}$:	
$3\Pi\ddot{6}06A-2$ при $P_{\rm BX}=0.16{\rm Br}$	4 дБ
$3\Pi606$ Б-2 при $P_{\text{вх}}$ =0,1 Вт	6 дБ
311606В-2 при $P_{_{\mathrm{BX}}}$ =0,24 Вт	5 дБ
при $U_{\text{CM}} = 5 \text{ B}, P_{\text{вх}} = 20 \text{ мВт}$:	
3П606А-2	4 лБ
31100D-2 .	6 - 5
3П606В-2 Коэффициент полезного действия на частоте f=	6 дБ
$_{\rm CO}$ то и $_{\rm CN}$ но менее:	
$2\Pi_{COCA}$ 0 $\Pi_{CN} = 0$ D, $\Pi_{K} = +25$ °C, He MeHee:	
3П606A-2 при Р _{вх} =0,16 Вт	20 %
3П606Б-2 при Р _{вх} =0,1 Вт	20 %
3П606В-2 при Р _{вх} =0,24 Вт	35 %
Крутизна характеристики при $U_{\text{СИ}}=3$ В, $I_{\text{С}}=0.25$ А,	
не менее	
311606A-2	70 mA/B
3П606А-2 3П606Б-2	90 мА/В

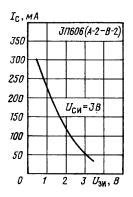
Остаточный ток стока при $U_{\text{СИ}} = 3 \text{ B}, U_{3\text{M}} = 5 \text{ B}$	0,01*0,5* 5* мА	
Ток утечки затвора при U_{3H} =3,5 В, не более:		
T_{κ} = $+25$ и $-60^{\circ}\mathrm{C}$	0,05 мА	
$T_{\kappa} = +125 ^{\circ}\text{C} $	0,125 мА	
Время нарастания при U_{CH} =7,5 В, U_{3H} =4 В, R_{H} =		
$=50$ Ом, $U_{\rm вx}=4$ В, типовое значение	100* пс	
Время задержки включения при $U_{\rm CH}$ =7,5 В, $U_{\rm 3H}$ =		
$=$ 4 В, $R_{\rm H}=$ 50 Ом, $U_{\rm вx}=$ 4 В, типовое значение	200* пс	
Предельные эксплуатационные данные		
Постоянное напряжение питания стока при T_{κ}		
= -60+85 °C	8 B	

Температура окружающей среды . . .

=-60...+40 °C


Постоянное напряжение затвор — исток . . .

Постоянная рассеиваемая мощность² при T_{κ} =


Средняя рассеиваемая мощность в динамическом режиме 2 при $T_{\rm K}$ = $-60...+40~{\rm ^{\circ}C}$

Тепловое сопротивление переход — корпус . .

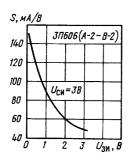
 $3\Pi606B-2$.

Зависимости тока стока от напря-

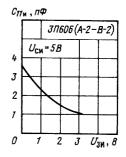
100 mA/B

-3,5 B

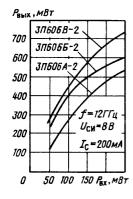
2 B_T

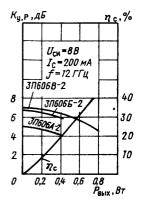

2 B_T

. $60 \,^{\circ}\text{C/B}_{\text{T}}$. $-60 \,^{\circ}\text{C...}$ $T_{\kappa} = +125 \,^{\circ}\text{C}$

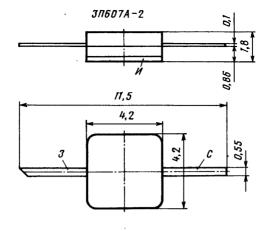

Зависимость тока стока от напряжения затвор — исток

 $^{^{1}}$ При $T_{\text{K}} = +85...+125$ °С $U_{\text{CM}} = 6$ В.


 $^{^2}$ При изменении $T_{\rm K}$ от +40 °C до +125 °C $P_{\rm MaKC}$ и $P_{\rm cp,\ MaKC}$ снижаются линейно до 0,5 Вт, при $T_{\rm K}=+85$ °C, $P_{\rm MaKC}=1,2$ Вт.


Зависимость крутизны характеристики от напряжения затвор — исток

Зависимость входной емкости от напряжения затвор — исток


Зависимость выходной мощности от входной

Зависимости коэффициента усиления и коэффициента полезного действия стока от выходной мощности

3П607Д-2

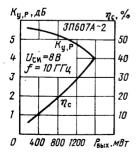
Транзистор арсенидогаллиевый планарный полевой с барьером Шотки и каналом *п*-типа генераторный. Предназначеи для применения в усилителях мощности и генераторах на частотах до 10 ГГц в герметизированной аппаратуре. Бескорпусный, с гибкими выводами, на керамическом кристаллодержателе. Тип прибора указывается в этикетке. Масса транзистора не более 0,12 г.

• • • •	
Выходная мощность на частоте $f=10~\Gamma\Gamma$ ц при $U_{\rm CH}=$ =8 В, $P_{\rm BX}=380~{\rm MBT},~T_{\rm K}=+25~{\rm ^{\circ}C}$	11,1*1,2* Вт
Коэффициент усиления по мощности на частоте $f =$	
=10 ГГц при U_{CM} =8 В, P_{BA} =380 мВт, T_{K} = +25 °C	4,54,9*6* дБ
Коэффициент усиления по мощности в линейной об-	
ласти амплитудной характеристики на частоте	
$f = 10 \ \Gamma \Gamma_{\text{Ц}} \ \text{при } U_{\text{СИ}} = 5 \ \text{B}, P_{\text{вх}} = 100 \ \text{мВт}, T_{\text{к}} = +25 \ ^{\circ}\text{C}$	45*7* дБ
Коэффициент полезного действия стока на частоте	
f =10 ГГц при $U_{\text{СИ}}$ =8 В, $P_{\text{вх}}$ =380 мВт, T_{K} = +25 °C	2026*45* %
Крутизна характеристики при $U_{\rm CM}{=}3$ В, $U_{\rm 3M}{=}-2$ В	80300*
	400* mA/B
Начальный ток стока при $U_{\rm CH}{=}3$ В, $U_{\rm 3H}{=}0$	0,8*1,1*1,6* A
Остаточный ток стока при $U_{\rm CM}{=}3$ В, $U_{\rm 3M}{=}-5$ В	0,010,55 мА
Ток утечки затвора при $U_{3H} = -5$ В:	
$T_{\rm K} = +25$ и -60 °C	0,01*0,5*
	400 мкА
$T_{\rm k}\!=\!+125^{\circ}{\rm C}$	0,1*5*800 мкА
при $U_{\text{СИ}} = 1$ В, $I_{\text{C}} = 500$ мА	3*5*6* Ом
Предельные эксплуатационные дання	ые
Постоянное напряжение питания стока	
Постоянное напряжение затвор — исток	—5 B
Постоянная рассеиваемая мощность при $T_{\kappa} = -60 + 25^{\circ}\text{C}$	3,5 Вт
Средняя рассеиваемая мощность в динамическом режиме 2 при $T_{\rm k}\!=\!-60\!+\!25^{\rm o}{\rm C}$	3,5 Вт

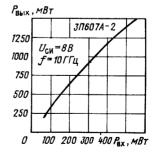
Температура структуры		 +165 °C
Тепловое сопротивление структура	корпус .	 37 °С/Вт
Температура окружающей среды		 $-60 ^{\circ}\text{C}T_{\kappa} = +125 ^{\circ}\text{C}$

 $^{\rm I}$ При $T_{\rm K}{>}+25~^{\rm o}{\rm C}$ постоянная рассеиваемая мощность определяется из выражения

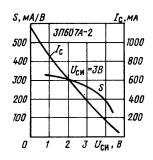
$$P_{\text{Make}}, \text{ Bt} = \frac{165 - T_{\text{K}}}{37}.$$


 2 Средняя рассеиваемая мощность может быть определена из выражения

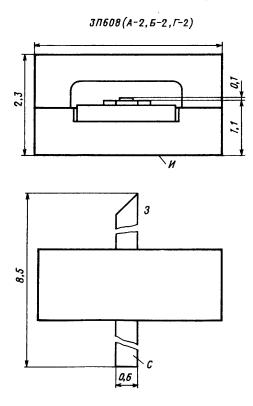
$$P_{\text{CD. Makc}} = U_{\text{CM}} I_{\text{C}} - (P_{\text{BMX}} - P_{\text{BX}})$$


При монтаже транзисторов в гибридную микросхему рекомендуется приклеивать основание кристаллодержателя к теплоотводящей поверхности монтажной платы теплопроводящим клеем УП-5-207М ТУ6-05-241-208-79. Перед нанесением клея кристаллодержатель транзистора и монтажная плата должны быть прогреты при +60 °C в течение 6 мин. Клей должен быть нанесен тонким слоем, соединение склеиваемых поверхностей производить прижатием так, чтобы избыток клея равномерно выступал из-под основания. После приклеивания должна производиться подсушка при +120 °C в течение 1 ч и при +150 °C в течение 2 ч.

Допускается осуществлять монтаж транзисторов в микросхему припайкой основания кристаллодержателя к теплоотводящей поверхности платы при температуре пайки не более $+180\,^{\circ}\mathrm{C}$ или при $+200\,^{\circ}\mathrm{C}$ в течение не более 3 мин.


Изгиб выводов допускается не ближе 1 мм от кристаллодержателя с радиусом закругления 0,5 мм. Минимальное расстояние места присоединения вывода от кристаллодержателя 2 мм, температура пайки не более $+260\,^{\circ}$ С, время пайки не более 3 с. Допускается пайка или сварка на расстоянии 0,5 мм от кристаллодержателя при температуре не более $+150\,^{\circ}$ С в течение не более 3 с.

Зависимости коэффициента усиления и коэффициента полезного действия стока от выходной мощности


Зависимость выходной мощности от входной

Зависимость крутизны характеристики от напряжения сток — исток

3П608А-2, 3П608Б-2, 3П608Г-2

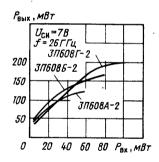
Транзисторы арсенидогаллиевые планарные полевые с барьером Шотки и каналом n-типа генераторные. Предназначены для применения в усилителях мощности и генераторах в герметизированной аппаратуре. Бескорпусные, с гибкими выводами, на керамическом кристалло-

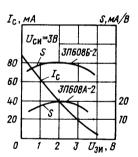
держателе. Маркируются цветными точками: $3\Pi608A-2$ — одной желтой; $3\Pi608B-2$ — двумя желтыми, $3\Pi608\Gamma-2$ — одной зеленой. Тип прибора указывается в этикетке. Масса транзистора не более 0,09 г.

Электрические параметры

Выходная мощность на частоте f = 26 ГГц, при U_{CM} = = 7 В, T_{K} = +25 °C: $3\Pi608\text{A}$ -2 при P_{BX} = 44,5 мВт
$3\Pi608A-2$ при $P_{\rm Bx}=44,5$ мВт
$3\Pi608$ Б-2 при $P_{_{\mathrm{BX}}}\!\!=\!66,5$ мВт
$3\Pi608\Gamma-2$ при $P_{\rm BX}=60$ мВт
311608Б-2 при $P_{\rm BX}$ =60,5 мВт
311608Б-2 при $P_{\rm BX}$ =60,5 мВт
311608Б-2 при $P_{\rm BX}$ =60,5 мВт
311608Б-2 при $P_{\rm BX}$ =60,5 мВт
Коэффициент усиления по мощности в линейной области амплитудной характеристики при $U_{\rm CH}=4$ В, $P_{\rm BX}=5$ мВт, $T_{\rm K}=+25$ °C:
ласти амплитудной характеристики при $U_{\mathrm{CH}}{=}4$ В, $P_{\mathrm{Bx}}{=}5$ мВт, $T_{\mathrm{K}}{=}+25$ °C:
на частоте $f=18$ ГГц . 45*6* дБ 3П608Г-2 на частоте $f=26$ ГГц . 56*7* дБ Коэффициент полезного действия на частоте $f=26$ ГГц при $U_{\rm CH}=7$ В, $T_{\rm K}=+25$ °C: 3П608А-2 при $P_{\rm BX}=44.5$ мВт . 1517*20* % 3П608Б-2 при $P_{\rm BX}=66,5$ мВт . 1012*15* % 3П608Г-2 при $P_{\rm BX}=60$ мВт . 1516*17* % Крутизна характеристики при $U_{\rm CH}=3$ В: 3П608А-2 при $I_{\rm C}=50$ мА
$3\Pi608\Gamma$ -2 на частоте f =26 $\Gamma\Gamma$ ц
Коэффициент полезного действия на частоте $f=26$ ГГц при $U_{\rm CH}=7$ В, $T_{\rm K}=+25$ °C:
Коэффициент полезного действия на частоте $f=26$ ГГц при $U_{\rm CH}=7$ В, $T_{\rm K}=+25$ °C:
$_{3}\Pi608\text{A-2}$ при $P_{\text{Bx}}\!\!=\!44,5$ мВт
крутизна характеристики при $U_{\text{CH}}\!\!=\!\!5$ В. $3\Pi608\text{A}\cdot 2$ при $I_{\text{C}}\!\!=\!\!50$ мА
крутизна характеристики при $U_{\text{CH}}\!\!=\!\!5$ В. $3\Pi608\text{A}\cdot 2$ при $I_{\text{C}}\!\!=\!\!50$ мА
крутизна характеристики при $U_{\text{CH}}\!\!=\!\!5$ В. $3\Pi608\text{A}\cdot 2$ при $I_{\text{C}}\!\!=\!\!50$ мА
$3\Pi608\text{A}-2$ при $I_{\text{C}}{=}50$ м A
$3\Pi608$ Б-2 при I_C =100 мА
$3\Pi608Б-2$ при $I_C=100$ мА
60* v4 /B
$3\Pi608\Gamma-2$ при $I_{\rm C}{=}100$ м ${\rm A}$
95* MA/B
Ток утечки затвора при $U_{3N} = -3$ В:
$T_{\rm K}$ = +25 и -60 °C
0,2 mA
$T_{\rm K} = +125 {\rm ^{\circ}C} $
$I_{K} = +125 C \dots \dots$
Предельные эксплуатационные данные
Постоянное напряжение стока при $T_{\rm K}\!=\!-60$ +70 °C
+70°C 7 B
Постоянное напражение затвор — исток — 3 В
Постоянная рассеиваемая мощность ² при T_{κ} =
постоянная рассеиваемая мощность при тк
=-60+40 °C:
3П608А-2
$3\Pi 608Б-2$
3 П608Г-2 1 Вт

Средняя рассеиваемая мощность в динамическом

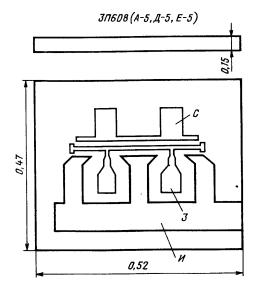

режиме при $T_{\kappa} = -60... + 40$ °C:


$3\Pi608$ Б- 2	. 1,1 Вт
3П608Г-2	. 1 Вт
Температура структуры	. +150 °C
Тепловое сопротивление структура — кристаллодер	-
ж атель:	
3П608А-2	. 200°C/Вт
$3\Pi 608\text{B}-2$, $3\Pi 608\Gamma -2$. 100°C/Вт
Температура окружающей среды	. $-60 ^{\circ}\text{C}T_{\kappa} =$
	$=+125 ^{\circ}\text{C}^{"}$

 $P_{\text{Make}}, \text{ BT} = \frac{150 - T_{\text{K}}}{R_{T(T_{\text{K}}, t)}}.$

При монтаже транзисторов в гибридную микросхему рекомендуется приклеивать основание кристаллодержателя транзистора к теплоотводу теплопроводящим клеем УП-5-207М Т26-05-241-208-85.

Изгиб выводов допускается на расстоянии не менее 2 мм от кристаллодержателя с радиусом закругления не более 0,5 мм. Минимальное расстояние места присоединения вывода от кристаллодержателя 0,5 мм. Допускается пайка выводов при температуре не более +260 °C в течение не более 3 с.


Зависимость выходной мошности от входной

Зависимости тока стока и крутизны характеристики от напряжения затвор -- исток

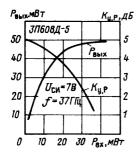
3П608А-5, 3П608Д-5, 3П608Е-5

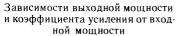
Транзисторы арсенидогаллиевые планарные полевые с барьером Шотки и каналом п-типа генераторные. Предназначены для применения в усилителях и генераторах в герметизированной аппаратуре. Бескорпусные, на пластине, перазделенные. Тип прибора указывается в этикетке. Масса транзпетора не более 0,0006 г.

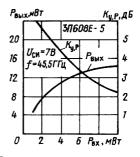
 $^{^1}$ В диапазоне $T_{\rm K}\!\!=\!+70...\!+\!125\,^{\circ}{\rm C}$ $U_{\rm CM}\!\!\leqslant\!\!6$ В. 2 При $T_{\rm K}\!\!>\!+40\,^{\circ}{\rm C}$ постоянная рассеиваемая мощность определяется из выражения

Выходная мощность при $U_{\eta} = 7$ В, не менее: $3\Pi608\text{A} \cdot 5$ на частоте $f = 26$ ГГц при $P_{\text{Bx}} = 44,5$ мВт	100 мВт 30 мВт 10 мВт
не менее: $3\Pi608\text{A}\text{-}5$ на частоте f = 26 $\Gamma\Gamma$ ц при $P_{\text{вx}}$ = $=44,5$ мВт	3,5 дБ 4 дБ 4 дБ
Коэффициент усиления по мощности в линейной области амплитудной характеристики при $U_{\rm n}{=}4$ B, $P_{\rm Bx}{=}5$ мВт, $f{=}26$ ГГц при 3П608А-5, не менее	3,5 дБ
коэффициент полезного действия стока при $P_{\rm BX}=18$, не менее: $3\Pi608\text{A}$ -5 на частоте f = 26 ГГц при $P_{\rm BX}$ = 44 ,5 мВт $3\Pi608\text{E}$ -5 на частоте f = 37 ГГц при $P_{\rm BX}$ = 12 мВт $3\Pi608\text{E}$ -5 на частоте f = 45 ,5 ГГц при $P_{\rm BX}$ = $=4$ мВт	15 % 5 % 2 %
Крутизна характеристики при $U_{\rm CH}{=}3$ В, $I_{\rm C}{=}50$ мА, не менее	15 мА/В
Ток утечки затвора при $U_{\rm 3H}{=}{-}3$ В, не более: $T{=}+25$ и $-60^{\circ}{\rm C}$	0,2 мА 1 мА

Предельные эксплуатационные данные

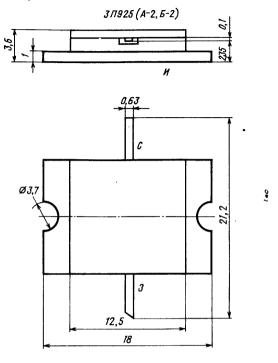

Постоянное напряжение питания стока 1 при $T=$	
=-60+70 °C	7 B
Постоянное напряжение затвор — исток	—3 B
Постоянная рассеиваемая мощность 2 при $T=$	
=-60+40 °C	0,6 Вт
Средняя рассеиваемая мощность в динамическом	
режиме ² при $T = -60 + 40$ °C	0,6 Вт
Температура структуры	
Тепловое сопротивление структура — кристаллодер-	,
жатель	200°C/Вт
Температура окружающей среды	-60+125 °C


 1 В диапазоне $T = +70...+125\,^{\circ}$ С $U_{\text{п, макс}} \leqslant 6\,$ В.


$$P_{\text{макс}} = P_{\text{ср, макс}}, \text{ BT} = \frac{150 - T}{200}.$$

Монтаж транзистора в гибридную микросхему рекомендуется осуществлять с помощью клея типа 949-C blyO. 028.052 ty. Температура сушки +120 °C, время сушки 90 мин.

Термокомпрессионное присоединение к контактным площадкам истока транзистора рекомендуется осуществлять перемычкой из золотой фольги размером 0,7...0,4 мм. Присоединение выводов к контактным площадкам рекомендуется производить термокомпрессионной сваркой при температуре +330°C в течение времени не более 3 с. В качестве вывода должна применяться золотая проволока.


Зависимости выходной мощности и коэффициента усиления от входной мощности

3П925А-2, 3П925Б-2

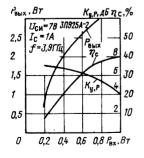
Транзисторы арсенидогаллиевые эпитаксиально-планарные полевые с барьером Шотки и каналом n-типа усилительные. Предназначены для применения в широкополосных усилителях мощности в диапазонах частот 3,7...4,2 ГГц (для $3\Pi925A-2$), 4,3...4,8 ГГц (для $3\Pi925b-2$) в тракте с волновым сопротивлением 50 Ом в герметизированной аппа-

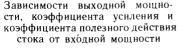
 $^{^2}$ При. $T>+40\,^{\circ}$ С постоянная и средняя рассеиваемая мощность определяется из выражения

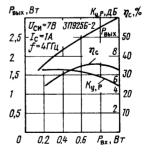
ратуре. Бескорпусные, в металлокерамическом кристаллодержателе, с гибкими выводами. Тип прибора указывается на кристаллодержателе. Масса транзистора не более 5 г.

Электрические параметры	
Выходная мощность при $U_{\rm CM}{=}7$ В, $Z_{\rm BX}{=}Z_{\rm Bbix}{=}$ = 50 Ом, $P_{\rm BX}{=}0.7$ Вт, $T_{\rm K}{=}{+}25$ °C:	
3П925А-2 в диапазоне частот 3,74,2 ГГц 3П925Б-2 в диапазоне частот 4,34,8 ГГц	
Коэффициент усиления по мощности при $U_{\rm CH}$ =7 В, $Z_{\rm BX}$ = $Z_{\rm BMX}$ =50 Ом, $P_{\rm BX}$ =0,7 Вт, $T_{\rm K}$ =+25 °C:	, ,
^ 3П925А-2 в диапазоне частот 3,74,2 ГГц	
Коэффициент полезного действия при $U_{\rm CH}$ =7 B, $Z_{\rm BX}$ = $Z_{\rm BMX}$ =50 Ом, $P_{\rm BX}$ =0,7 Bt, $T_{\rm K}$ =+25 °C:	
3П925А-2 в диапазоне частот 3,74,2 ГГц	
Коэффициент стоячей волны по напряжению при $U_{CM} = 7$ В, $Z_{BX} = Z_{BMX} = 50$ Ом, $P_{BX} = 0.7$ Вт, $T_{K} = 0.00$	
=+25 °C в диапазоне частот 3,74,2 ГГц (для 3П925А-2) и 4,34,8 ГГц (для 3П925Б-2), не более	3
Крутизна характеристики при $U_{\text{СИ}}$ =3 В, I_{C} =1,8 А	300*500* 700* мА/В
Начальный ток стока при $U_{\text{CM}} = 3 \text{ B, } U_{\text{3M}} = 0 \dots$ Остаточный ток стока при $U_{\text{CM}} = 3 \text{ B, } U_{\text{3M}} = -6 \text{ B} \dots$	1,8*2,4*3* A 1*10*100* MA

Ток утечки затвора при $U_{3H} = -5$ В, не более:	
$T_{\nu} = +25$ и $-60^{\circ}\mathrm{C}$	0,1 mA
$T_{\kappa} = +125 ^{\circ}\text{C}$	0,25 мА
Сопротивление сток — исток в открытом состоянии	40 450
при $U_{\text{CM}} = 1$ В, $U_{\text{3M}} = 0$	0,75*1*1,5* Ом


Предельные эксплуатационные данные

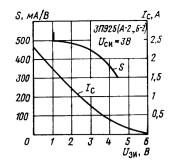

Постоянное напряжение сток — исток при T_{K}	
=-60+85 °C	8 B
Постоянное напряжение затвор — исток	5 B
Постоянная рассеиваемая мощность 2 при T_{κ}	
=-60+25 °C	7 Вт
Средняя рассеиваемая мощность в динамическом	
режиме ² при $T_{\nu} = -60 + 25 ^{\circ}\text{C}$.	7 Br
Температура кристалла	+150 °C
Тепловое сопротивление кристалл — корпус	18 °C/BT
Температура окружающей среды	$-60^{\circ}\text{C}T_{\kappa} =$
	$=+125^{\circ}\text{C}$

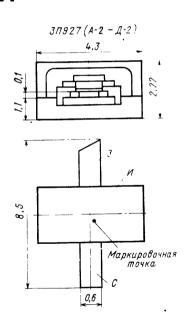

 1 При $T_{\rm K}{>}{+}85\,^{\rm o}{\rm C}$ $U_{\rm CM,~макc}{\leqslant}7$ В. 2 При $T_{\rm K}{>}{+}25\,^{\rm o}{\rm C}$ постоянная и средняя рассеиваемая мощность определяется из выражения

$$P_{\text{MaKC}}, \text{ BT} = \frac{150 - T_{\text{K}}}{18};$$

 $P_{\text{CP, MaKC}} = U_{\text{CM}}I_{\text{C}} - (P_{\text{BMX}} - P_{\text{BX}}).$

Расстояние места пайки выводов до кристаллодержателя не менее 2 мм, температура пайки +260°C, время пайки не более 3 с. Допускается пайка или сварка выводов на расстоянии не менее 0,5 мм от кристаллодержателя при температуре +150 °C в течение не более 3 с.




Зависимости выходной мошности, коэффициента усиления и коэффициента полезного действия стока от входной мошности

Зависимости тока стока и крутизны характеристики от напряжения затвор — исток

3П927А-2, 3П927Б-2, 3П927В-2, 3П927Г-2, 3П927Д-2

Транзисторы арсенидогаллиевые планарные полевые барьером Шотки и каналом п-типа генераторные. Предназначены применения в усилителях мощности, автогенераторах, преобразователях частоты в диапазоне частот 1...18 ГГц. Бескорпусные, на кристаллодержателе, с гибкими выводами. Маркируцветными точками: 3П927A-2 — красной, 3П927Б-2— 3П927В-2 черной, 3∏927Г-2 — красной и белой, 3П927Д-2 — красной и черной. Тип прибора указывается в этикетке. Масса транзистора не более 0,085 г.

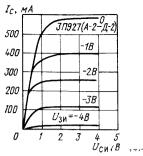
Электрические параметры

Выходная мощность при $U_{\text{СИ}}{=}7$ В, $T_{\text{K}}{=}+25\,^{\circ}\text{C}$: $3\Pi 927\text{A}-2$ на частоте $f{=}17.4$ ГГц, $P_{\text{BX}}{=}0.25$ Вт $0.5...0.6^{*}...0.7^{*}$ Вт $3\Pi 927\text{B}-2$ на частоте $f{=}17.4$ ГГц, $P_{\text{BX}}{=}0.17$ Вт $0.5...0.55^{*}...0.6^{*}$ Вт $0.5...0.55^{*}...0.6^{*}$ Вт $0.5...0.65^{*}...0.7^{*}$ Вт $0.5...0.65^{*}...0.7^{*}$ Вт $0.5...0.65^{*}...0.7^{*}$ Вт $0.5...0.65^{*}...0.7^{*}$ Вт $0.5...0.65^{*}...0.7^{*}$ Вт $0.5...0.65^{*}...0.7^{*}$ Вт $0.5...0.7^{*}$ Вт

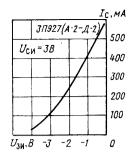
Коэффициент усиления по мощности при $U_{\rm CH}$ =7 В, $T_{\rm K}$ =+25 °C:	
$3\Pi927A-2$ на частоте $f=17,4$ ГГц, $P_{\rm BX}=0,25$ Вт $3\Pi927B-2$ на частоте $f=17,4$ ГГц, $P_{\rm BX}=0,17$ Вт $3\Pi927B-2$ на частоте $f=17,4$ ГГц, $P_{\rm BX}=0,195$ Вт $3\Pi927\Gamma-2$ на частоте $f=17,4$ ГГц, $P_{\rm BX}=0,35$ Вт $3\Pi927\Gamma-2$ на частоте $f=21$ ГГц, $P_{\rm BX}=0,25$ Вт Коэффициент усиления по мощности в линейной об-	33,5*4,9* дБ 55,5*5,8* дБ 55,3*5,6* дБ 33,3*3,6* дБ 33,5*4* дБ
ласти амплитудной характеристики по $U_{\text{CM}} = 5$ B, $T_{\text{K}} = +25^{\circ}\text{C}$:	
$3\Pi927$ А-2 на частоте f =17,4 $\Gamma\Gamma$ ц, $P_{\rm BX}$ =50 мВт $3\Pi927$ Б-2 на частоте f =17,4 $\Gamma\Gamma$ ц, $P_{\rm BX}$ =20 мВт $3\Pi927$ В-2 на частоте f =17,4 $\Gamma\Gamma$ ц, $P_{\rm BX}$ =20 мВт $3\Pi927$ Г-2 на частоте f =17,4 $\Gamma\Gamma$ ц, $P_{\rm BX}$ =20 мВт $3\Pi927$ Д-2 на частоте f =21 $\Gamma\Gamma$ ц, $P_{\rm BX}$ =20 мВт	3,54,5*5* дБ 5,56*6,5* дБ 5,56*6,5* дБ 3,54,5*5* дБ 3,54,5*5* дБ
Коэффициент полезного действия стока при $U_{\text{СИ}} = -7 \text{ B}, T_{\text{K}} = +25 ^{\circ}\text{C}$:	
$3\Pi927$ А-2 на частоте f =17,4 Γ Гц, $P_{\rm Bx}$ =0,25 Вт $3\Pi927$ Б-2 на частоте f =17,4 Γ Гц, $P_{\rm Bx}$ =0,17 Вт $3\Pi927$ В-2 на частоте f =17,4 Γ Гц, $P_{\rm Bx}$ =0,195 Вт $3\Pi927$ Г-2 на частоте f =17,4 Γ Гц, $P_{\rm Bx}$ =0,35 Вт $3\Pi927$ Д-2 на частоте f =21 Γ Гц, $P_{\rm Bx}$ =0,25 Вт Крутизна характеристики при $U_{\rm CM}$ =3 В, $I_{\rm C}$ =0,4 А:	2022*25* % 2022*25* % 2022*25* % · 2022*25* % 2022*25* %
$3\Pi 927A-2$	50140*
3П927Б-2, 3П927В-2, 3П927Г-2, 3П927Д-2	150* мА/В 50150* 200* мА/В
$T = +25 \text{ и} -60 ^{\circ}\text{C}$	0,005*0,01*
$T = +125 ^{\circ}\text{C}$	0,1 mA 0,05*0,1*1 mA

Предельные эксплуатационные данные

Постоянное напряжение затвор — исток		3 B
Постоянная и средняя рассеиваемая мощность	при	
$T_{\rm K} = -60 + 40 ^{\circ}{\rm C}$		2,5 Вт
Температура окружающей среды		$-60 ^{\circ} \text{C} T_{\kappa} =$
•		$=+125^{\circ}\text{C}$

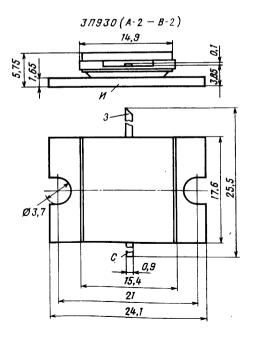

Постоянное напряжение питания стока 7 В

Присоединение выводов в аппаратуре осуществляется сваркой. Минимальное расстояние места сварки выводов до кристаллодержателя $0.2\,$ мм.


При монтаже транзистора в аппаратуре обязательна припайка основания к теплоотводящей плате или приклейка теплопроводящим клеем. Пайка кислотными флюсами не допускается. Температура пайки не выше $+150\,^{\circ}\mathrm{C}$.

В рабочем режиме ток в цепи затвора не должен превышать $5\ \mathrm{mA}.$

 $^{^1}$ При $T_{\rm K}{>}{+}40~{\rm ^{\circ}C}~P_{\rm Makc}$ и $P_{\rm cp,~Makc}$ снижаются линейно до 0,5 Вт при $T_{\rm K}{=}{+}125~{\rm ^{\circ}C}.$

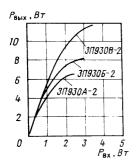

Зависимости тока стока от напряжения сток — исток

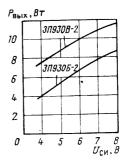
Зависимость тока стока от напряжения затвор — исток

3П930А-2, 3П930Б-2, 3П930В-2

Транзисторы арсенидогаллиевые эпитаксиально-планарные полевые с барьером Шотки и каналом *п*-типа генераторные. Предназначены для применения в широкополосных усилителях мощности в диапазоне частот 5,7...6,3 ГГц в герметизированной аппаратуре. Бескорпусные, на металлическом кристаллодержателе, с гибкими выводами. Тип прибора указывается на кристаллодержателе. Масса транзистора не более 10 г.

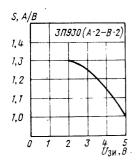
Committee and the second	
Выходная мощность в диапазоне частот 5,76,3 ГГц, $U_{\rm CH}=8$ В, $Z_{\rm BX}=Z_{\rm BMX}=50$ Ом, $T_{\rm K}=+25$ °C: 3П930А-2 при $P_{\rm BX}=1,4$ Вт	55,5*7* BT 7,58*9,5* BT 10 BT 10,5* b.
3 П930A-2 при 2 Р $_{\rm BX}$ =1,4 Вт	5 дБ 4,55*5,5* дБ
$^{\circ}$ 3П930А-2 при $P_{\rm BX}$ =1,4 Вт	2530*40* % 3035*45* % 40 % 45* %
не менее	1,3* A/B 4 A 4,5* A 15 MA
Ток утечки затвора при $U_{\rm 3H} = -5$ В: $T_{\rm K} = +25 {\rm u} - 60 {\rm °C}$	0,001*0,01* 0,5 мА 1 мА
Предельные эксплуатационные данн	ые
Постоянное напряжение сток — исток	8 B —5 B
=-60+35 °C	21 B T
режиме 2 при T_{κ} = $-60+35^{\circ}$ С	+150 °C
Температура окружающей среды	$-60 ^{\circ}\text{C}T_{\kappa} = +125 ^{\circ}\text{C}$

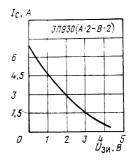

 $^{1 \, {\}rm При} \, T_{\rm K} > +35 \, {\rm ^{\circ}C} \, {\rm постоянная} \, {\rm рассеиваемая} \, {\rm мощность} \, {\rm определяется} \, {\rm из} \, {\rm выражения}$


$$P_{\text{Makc}}, B_{\text{T}} = \frac{150 - T_{\text{K}}}{6}.$$

$$P_{\text{cp, Makc}}, \text{ BT} = U_{\text{CH}}I_{\text{C}} - (P_{\text{BMX}} - P_{\text{BX}}).$$

 $^{^{2}}$ Средняя рассеиваемая мощность может быть определена из выражения


Минимальное расстояние места пайки выводов до кристаллодержателя 1 мм, температура пайки не выше $+260\,^{\circ}$ С. Допускается пайка (сварка) выводов на расстоянии не менее 0,5 мм от кристаллодержателя, температура пайки не выше $+150\,^{\circ}$ С, время пайки не более 3 с.



Зависимости выходной мощности от входной

Зависимости выходной мощности от напряжения сток — исток

Зависимость крутизны характеристики от напряжения затвор — исток

Зависимость тока стока от напряжения затвор — исток

КП937А, КП937А-5

Транзисторы кремниевые полевые планарные с затвором на основе p-n перехода и вертикальным каналом n-типа переключательные. Предназначены для применения в источниках вторичного электропитания, преобразователях напряжения, системах электропривода, импульсных генераторах электронскровых обрабатывающих комплексах. Транзистор КП937А-5 предназначен для применения в гибридных интегральных микросхемах. Конструктивно транзистор КП937А-5 выполнен в виде кристалла размером $6 \times 6 \times 0$,4 мм на общей пластине диаметром 76 мм с контактными площадками. Транзистор КП937А

выпускается в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Габаритный чертеж корпуса соответствует КП934A. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

Электрические параметры

Сопротивление сток — исток в открытом состоянии при $I_{\rm C}{=}10$ A, $I_{\rm 3}{=}1$ A, не более	0,07 Ом
Статический коэффициент передачи тока при	
$U_{\rm CM}$ =5 В, $I_{\rm C}$ =5 А, типовое значение	20
Напряжение отсечки при $U_{\rm cu}=450$ В. $I_{\rm c}=2$ мА,	
ие менее	—15 B
Ток утечки затвора при $U_{24} = -15 \text{ B}, U_{30} = -15 \text{ B},$	
не более	0,3 мА
Ток затвор — сток обратносмещенного перехода	
при $U_{3C} = 475$ В, не более	I MA

Предельные эксплуатационные данные

rapedembride overhily aradioninal Administra					
Постоянное напряжение сток — исток	450 B				
Постоянное напряжение затвор — сток	470 D				
Постоянное напряжение, затвор — исток	20 B				
Постоянный ток стока					
Импульсный ток стока	30 A				
Постоянный прямой ток затвора	2 A				
Импульсный прямой ток затвора	4 A				
Постоянная рассеиваемая мощность	50 Вт				
Температура окружающей среды	$-60 ^{\circ}\text{C} T_{\kappa} =$				
Температура окружающей среды	$= +125 ^{\circ}\text{C}$				

2П938А, 2П938Б, 2П938В, 2П938Г, 2П938Д, КП938А, КП938Б, КП838В, КП988Г, КП938Д

Транзисторы кремниевые полевые эпитаксиально-планарные с затвором на основе *p-п* перехода и вертикальным каналом *п-*типа переключательные. Предназначены для применения в импульсных источниках вторичного электропитания, для питания двигателей постоянного и переменного тока, в мощных коммутаторах, усилителях низкой частоты. Выпускаются в металлическом корпусе с жесткими выводами и стеклянными изоляторами. Габаритный чертеж корпуса соответствует КП934A. Тип прибора указывается на корпусе. Масса транзистора не более 20 г.

Электрические параметры

CU	CIC	,,,,,,,	 111) FL	
					0,07 Ом
					0,1 Ом
					0,1 Ом

Сопротивление канала в открытом состоянии при

Статический коэффициент передачи тока при $U_{\text{CH}} = 5 \text{ B}, \ I_{\text{C}} = 5 \text{ A}$, не менее:						
= 5 В, $I_{\rm C}$ = 5 А, не менее: $I_{\rm C}$ = $I_{\rm C}$ = 5 В, $I_{\rm C}$ = 5 А, не менее: $I_{\rm C}$ = $I_{\rm C}$	20 10					
$=10$ A, $I_3=2$ A для $2\Pi 938$ A — $2\Pi 938$ Д, не более: $T=+25$ °C	0,7 B					
$T=+25^{\circ}\mathrm{C}$	1 B 3 mA					
Ток утечки затвора при $U_{\rm 3H} = -5$ В, не более: $T = +25^{\circ}{\rm C}$	10 мА					
2П938Д при $U_{3\mu} = -3$ В, не более $T = +25$ °C	3 мА 10 мА					
Время включения при $U_{\rm CM} = 150$ В, $I_{\rm C} = 10$ А, $I_{\rm 3} = 2$ А, не более	0,2 мкс					
Время рассасывания при Uou=150 В Io=10 A	0,15 мкс					
I_3 =2 A, не более	1,5 mkc					
•	#C					
Постоянное напряжение сток — исток: 2П938A, 2П938Б, КП938A, КП938Б	500 B					
2П938В, КП938В						
2П938Г. КП938Г	400 B					
211938Д, К11938Д	300 B					
TT						
Постоянное напряжение затвор — сток: 2П938A, 2П938Б 2П938Г 2П938Д КП938А, КП938Б КП938В КП938В КП938В КП938В Постоянное напряжение затвор — исток	505 B					
2П938В	455 B					
2Π938Γ	. 405 B					
2П938Д	305 B					
КП938 А , КП938Б	500 B					
КП938В	450 B					
КП938Г	400 B					
КП938Д	300 B					
Постоянное напряжение затвор — исток	5 B					
2П938А — 2П938Д	12 A					
Импульеный ток стока: 2П938А — 2П938Д	20 A					
КП938А — КП938Д	18 A					
Постоянный прямой ток затвора:						
2П938А — 2П938Д	4 A					
КП938А — КП938Д	3 Å					
Импульсный прямой ток затвора:						
2П938А — 2П938Д	10 A					
кп938A — КП938Д · · · ·	5 A					
Постоянная рассеиваемая мощность при T_{ν}	- 					
=-60+25 °C · · · · · · · · · · · · · · · · · ·	50 Bτ					
Температура <i>p-n</i> перехода	+150 °C					
КП938А — КП938Д	$-60 ^{\circ}\text{C}T_{\text{K}} = +125 ^{\circ}\text{C}$					
1120 0						
При $T_{\rm K} > +25{\rm °C}$ $P_{\rm Make}$, BT=50 [(1-($T_{\rm K}$ -25)/125].						

Справочное издание

ПЕТУХОВ Владимир Матвеевич

полупроводниковые приборы

Транзисторы

Дополнение первое

Справочник

Заведующий редакцией Ю. Н. Рысев. Редактор Г. Н. Астафуров. Переплет художника Н. А. Пашуро. Художественный редактор В. И. Мусиенко.

Технический редактор Т. Н. Зыкина. Корректор Н. Л. Жукова.

ИБ № 2542

Сдано в набор 17.06.92. Подписано в печать 23.11.92. Формат 84×108/32. Бумага для мн аппар. Гарнитура литер. Печать офсет. Усл. печ. л 11,76. Усл. кр.-отт. 12,18. Уч.-изд. л. 13,40. Тираж 50 000 экз. Изд. № 23682. Зак. № 825 с-007 Издательство «Радно и связь». 101000 Москва, Почтамт, а/я 693

Ордена Трудового Красного Знамени Чеховский полиграфический комбинат Министерства печати и ниформации Российской Федерации. 142300, г. Чехов Московской области.